import ee ee.Initialize('farmbase-b2f7e') # Load the farm boundary coordinates. farm_boundary = ee.Geometry.Polygon([[ [-122.147868, 37.783687], [-122.147868, 37.785533], [-122.145517, 37.785533], [-122.145517, 37.783687], [-122.147868, 37.783687] ]]) # Load the Sentinel-2 satellite imagery collection. s2_collection = ee.ImageCollection('COPERNICUS/S2') # Filter the imagery collection to the farm boundary and the current year. s2_collection = s2_collection.filterBounds(farm_boundary).filterDate('2023-01-01', '2023-12-31') # Calculate the median of the overlapping pixels per band. s2_median = s2_collection.median() # Load the crop classification model. crop_model = ee.Model('MODIS/MOD15A2H') # Classify the farm using the crop classification model. crop_classification = crop_model.predict(s2_median) # Get the crop type at the center of the farm. crop_type = crop_classification.getRegion(farm_boundary, scale=10).getInfo()['features'][0]['properties']['cropland'] # Print the predicted crop type. print('The predicted crop type is:', crop_type)