// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This file contains classes which describe a type of protocol message. // You can use a message's descriptor to learn at runtime what fields // it contains and what the types of those fields are. The Message // interface also allows you to dynamically access and modify individual // fields by passing the FieldDescriptor of the field you are interested // in. // // Most users will not care about descriptors, because they will write // code specific to certain protocol types and will simply use the classes // generated by the protocol compiler directly. Advanced users who want // to operate on arbitrary types (not known at compile time) may want to // read descriptors in order to learn about the contents of a message. // A very small number of users will want to construct their own // Descriptors, either because they are implementing Message manually or // because they are writing something like the protocol compiler. // // For an example of how you might use descriptors, see the code example // at the top of message.h. #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_H__ #define GOOGLE_PROTOBUF_DESCRIPTOR_H__ #include #include #include #include #include #include #include #include #include #include #include #include // TYPE_BOOL is defined in the MacOS's ConditionalMacros.h. #ifdef TYPE_BOOL #undef TYPE_BOOL #endif // TYPE_BOOL #ifdef SWIG #define PROTOBUF_EXPORT #endif namespace google { namespace protobuf { // Defined in this file. class Descriptor; class FieldDescriptor; class OneofDescriptor; class EnumDescriptor; class EnumValueDescriptor; class ServiceDescriptor; class MethodDescriptor; class FileDescriptor; class DescriptorDatabase; class DescriptorPool; // Defined in descriptor.proto class DescriptorProto; class DescriptorProto_ExtensionRange; class FieldDescriptorProto; class OneofDescriptorProto; class EnumDescriptorProto; class EnumValueDescriptorProto; class ServiceDescriptorProto; class MethodDescriptorProto; class FileDescriptorProto; class MessageOptions; class FieldOptions; class OneofOptions; class EnumOptions; class EnumValueOptions; class ExtensionRangeOptions; class ServiceOptions; class MethodOptions; class FileOptions; class UninterpretedOption; class SourceCodeInfo; // Defined in message.h class Message; class Reflection; // Defined in descriptor.cc class DescriptorBuilder; class FileDescriptorTables; class Symbol; // Defined in unknown_field_set.h. class UnknownField; // Defined in command_line_interface.cc namespace compiler { class CommandLineInterface; namespace cpp { // Defined in helpers.h class Formatter; } // namespace cpp } // namespace compiler namespace descriptor_unittest { class DescriptorTest; } // namespace descriptor_unittest // Defined in printer.h namespace io { class Printer; } // namespace io // NB, all indices are zero-based. struct SourceLocation { int start_line; int end_line; int start_column; int end_column; // Doc comments found at the source location. // See the comments in SourceCodeInfo.Location (descriptor.proto) for details. std::string leading_comments; std::string trailing_comments; std::vector leading_detached_comments; }; // Options when generating machine-parsable output from a descriptor with // DebugString(). struct DebugStringOptions { // include original user comments as recorded in SourceLocation entries. N.B. // that this must be |false| by default: several other pieces of code (for // example, the C++ code generation for fields in the proto compiler) rely on // DebugString() output being unobstructed by user comments. bool include_comments; // If true, elide the braced body in the debug string. bool elide_group_body; bool elide_oneof_body; DebugStringOptions() : include_comments(false), elide_group_body(false), elide_oneof_body(false) { } }; // A class to handle the simplest cases of a lazily linked descriptor // for a message type that isn't built at the time of cross linking, // which is needed when a pool has lazily_build_dependencies_ set. // Must be instantiated as mutable in a descriptor. namespace internal { class PROTOBUF_EXPORT LazyDescriptor { public: // Init function to be called at init time of a descriptor containing // a LazyDescriptor. void Init() { descriptor_ = nullptr; once_ = nullptr; } // Sets the value of the descriptor if it is known during the descriptor // building process. Not thread safe, should only be called during the // descriptor build process. Should not be called after SetLazy has been // called. void Set(const Descriptor* descriptor); // Sets the information needed to lazily cross link the descriptor at a later // time, SetLazy is not thread safe, should be called only once at descriptor // build time if the symbol wasn't found and building of the file containing // that type is delayed because lazily_build_dependencies_ is set on the pool. // Should not be called after Set() has been called. void SetLazy(StringPiece name, const FileDescriptor* file); // Returns the current value of the descriptor, thread-safe. If SetLazy(...) // has been called, will do a one-time cross link of the type specified, // building the descriptor file that contains the type if necessary. inline const Descriptor* Get(const ServiceDescriptor* service) { Once(service); return descriptor_; } private: void Once(const ServiceDescriptor* service); union { const Descriptor* descriptor_; const char* lazy_name_; }; internal::once_flag* once_; }; class PROTOBUF_EXPORT SymbolBase { private: friend class google::protobuf::Symbol; uint8_t symbol_type_; }; // Some types have more than one SymbolBase because they have multiple // identities in the table. We can't have duplicate direct bases, so we use this // intermediate base to do so. // See BuildEnumValue for details. template class PROTOBUF_EXPORT SymbolBaseN : public SymbolBase {}; } // namespace internal // Describes a type of protocol message, or a particular group within a // message. To obtain the Descriptor for a given message object, call // Message::GetDescriptor(). Generated message classes also have a // static method called descriptor() which returns the type's descriptor. // Use DescriptorPool to construct your own descriptors. class PROTOBUF_EXPORT Descriptor : private internal::SymbolBase { public: typedef DescriptorProto Proto; // The name of the message type, not including its scope. const std::string& name() const; // The fully-qualified name of the message type, scope delimited by // periods. For example, message type "Foo" which is declared in package // "bar" has full name "bar.Foo". If a type "Baz" is nested within // Foo, Baz's full_name is "bar.Foo.Baz". To get only the part that // comes after the last '.', use name(). const std::string& full_name() const; // Index of this descriptor within the file or containing type's message // type array. int index() const; // The .proto file in which this message type was defined. Never nullptr. const FileDescriptor* file() const; // If this Descriptor describes a nested type, this returns the type // in which it is nested. Otherwise, returns nullptr. const Descriptor* containing_type() const; // Get options for this message type. These are specified in the .proto file // by placing lines like "option foo = 1234;" in the message definition. // Allowed options are defined by MessageOptions in descriptor.proto, and any // available extensions of that message. const MessageOptions& options() const; // Write the contents of this Descriptor into the given DescriptorProto. // The target DescriptorProto must be clear before calling this; if it // isn't, the result may be garbage. void CopyTo(DescriptorProto* proto) const; // Write the contents of this descriptor in a human-readable form. Output // will be suitable for re-parsing. std::string DebugString() const; // Similar to DebugString(), but additionally takes options (e.g., // include original user comments in output). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Returns true if this is a placeholder for an unknown type. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; enum WellKnownType { WELLKNOWNTYPE_UNSPECIFIED, // Not a well-known type. // Wrapper types. WELLKNOWNTYPE_DOUBLEVALUE, // google.protobuf.DoubleValue WELLKNOWNTYPE_FLOATVALUE, // google.protobuf.FloatValue WELLKNOWNTYPE_INT64VALUE, // google.protobuf.Int64Value WELLKNOWNTYPE_UINT64VALUE, // google.protobuf.UInt64Value WELLKNOWNTYPE_INT32VALUE, // google.protobuf.Int32Value WELLKNOWNTYPE_UINT32VALUE, // google.protobuf.UInt32Value WELLKNOWNTYPE_STRINGVALUE, // google.protobuf.StringValue WELLKNOWNTYPE_BYTESVALUE, // google.protobuf.BytesValue WELLKNOWNTYPE_BOOLVALUE, // google.protobuf.BoolValue // Other well known types. WELLKNOWNTYPE_ANY, // google.protobuf.Any WELLKNOWNTYPE_FIELDMASK, // google.protobuf.FieldMask WELLKNOWNTYPE_DURATION, // google.protobuf.Duration WELLKNOWNTYPE_TIMESTAMP, // google.protobuf.Timestamp WELLKNOWNTYPE_VALUE, // google.protobuf.Value WELLKNOWNTYPE_LISTVALUE, // google.protobuf.ListValue WELLKNOWNTYPE_STRUCT, // google.protobuf.Struct // New well-known types may be added in the future. // Please make sure any switch() statements have a 'default' case. __WELLKNOWNTYPE__DO_NOT_USE__ADD_DEFAULT_INSTEAD__, }; WellKnownType well_known_type() const; // Field stuff ----------------------------------------------------- // The number of fields in this message type. int field_count() const; // Gets a field by index, where 0 <= index < field_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* field(int index) const; // Looks up a field by declared tag number. Returns nullptr if no such field // exists. const FieldDescriptor* FindFieldByNumber(int number) const; // Looks up a field by name. Returns nullptr if no such field exists. const FieldDescriptor* FindFieldByName(ConstStringParam name) const; // Looks up a field by lowercased name (as returned by lowercase_name()). // This lookup may be ambiguous if multiple field names differ only by case, // in which case the field returned is chosen arbitrarily from the matches. const FieldDescriptor* FindFieldByLowercaseName( ConstStringParam lowercase_name) const; // Looks up a field by camel-case name (as returned by camelcase_name()). // This lookup may be ambiguous if multiple field names differ in a way that // leads them to have identical camel-case names, in which case the field // returned is chosen arbitrarily from the matches. const FieldDescriptor* FindFieldByCamelcaseName( ConstStringParam camelcase_name) const; // The number of oneofs in this message type. int oneof_decl_count() const; // The number of oneofs in this message type, excluding synthetic oneofs. // Real oneofs always come first, so iterating up to real_oneof_decl_cout() // will yield all real oneofs. int real_oneof_decl_count() const; // Get a oneof by index, where 0 <= index < oneof_decl_count(). // These are returned in the order they were defined in the .proto file. const OneofDescriptor* oneof_decl(int index) const; // Looks up a oneof by name. Returns nullptr if no such oneof exists. const OneofDescriptor* FindOneofByName(ConstStringParam name) const; // Nested type stuff ----------------------------------------------- // The number of nested types in this message type. int nested_type_count() const; // Gets a nested type by index, where 0 <= index < nested_type_count(). // These are returned in the order they were defined in the .proto file. const Descriptor* nested_type(int index) const; // Looks up a nested type by name. Returns nullptr if no such nested type // exists. const Descriptor* FindNestedTypeByName(ConstStringParam name) const; // Enum stuff ------------------------------------------------------ // The number of enum types in this message type. int enum_type_count() const; // Gets an enum type by index, where 0 <= index < enum_type_count(). // These are returned in the order they were defined in the .proto file. const EnumDescriptor* enum_type(int index) const; // Looks up an enum type by name. Returns nullptr if no such enum type // exists. const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const; // Looks up an enum value by name, among all enum types in this message. // Returns nullptr if no such value exists. const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const; // Extensions ------------------------------------------------------ // A range of field numbers which are designated for third-party // extensions. struct ExtensionRange { typedef DescriptorProto_ExtensionRange Proto; typedef ExtensionRangeOptions OptionsType; // See Descriptor::CopyTo(). void CopyTo(DescriptorProto_ExtensionRange* proto) const; int start; // inclusive int end; // exclusive const ExtensionRangeOptions* options_; }; // The number of extension ranges in this message type. int extension_range_count() const; // Gets an extension range by index, where 0 <= index < // extension_range_count(). These are returned in the order they were defined // in the .proto file. const ExtensionRange* extension_range(int index) const; // Returns true if the number is in one of the extension ranges. bool IsExtensionNumber(int number) const; // Returns nullptr if no extension range contains the given number. const ExtensionRange* FindExtensionRangeContainingNumber(int number) const; // The number of extensions defined nested within this message type's scope. // See doc: // https://developers.google.com/protocol-buffers/docs/proto#nested-extensions // // Note that the extensions may be extending *other* messages. // // For example: // message M1 { // extensions 1 to max; // } // // message M2 { // extend M1 { // optional int32 foo = 1; // } // } // // In this case, // DescriptorPool::generated_pool() // ->FindMessageTypeByName("M2") // ->extension(0) // will return "foo", even though "foo" is an extension of M1. // To find all known extensions of a given message, instead use // DescriptorPool::FindAllExtensions. int extension_count() const; // Get an extension by index, where 0 <= index < extension_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* extension(int index) const; // Looks up a named extension (which extends some *other* message type) // defined within this message type's scope. const FieldDescriptor* FindExtensionByName(ConstStringParam name) const; // Similar to FindFieldByLowercaseName(), but finds extensions defined within // this message type's scope. const FieldDescriptor* FindExtensionByLowercaseName( ConstStringParam name) const; // Similar to FindFieldByCamelcaseName(), but finds extensions defined within // this message type's scope. const FieldDescriptor* FindExtensionByCamelcaseName( ConstStringParam name) const; // Reserved fields ------------------------------------------------- // A range of reserved field numbers. struct ReservedRange { int start; // inclusive int end; // exclusive }; // The number of reserved ranges in this message type. int reserved_range_count() const; // Gets an reserved range by index, where 0 <= index < // reserved_range_count(). These are returned in the order they were defined // in the .proto file. const ReservedRange* reserved_range(int index) const; // Returns true if the number is in one of the reserved ranges. bool IsReservedNumber(int number) const; // Returns nullptr if no reserved range contains the given number. const ReservedRange* FindReservedRangeContainingNumber(int number) const; // The number of reserved field names in this message type. int reserved_name_count() const; // Gets a reserved name by index, where 0 <= index < reserved_name_count(). const std::string& reserved_name(int index) const; // Returns true if the field name is reserved. bool IsReservedName(ConstStringParam name) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this message declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; // Maps -------------------------------------------------------------- // Returns the FieldDescriptor for the "key" field. If this isn't a map entry // field, returns nullptr. const FieldDescriptor* map_key() const; // Returns the FieldDescriptor for the "value" field. If this isn't a map // entry field, returns nullptr. const FieldDescriptor* map_value() const; private: friend class Symbol; typedef MessageOptions OptionsType; // Allows tests to test CopyTo(proto, true). friend class descriptor_unittest::DescriptorTest; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // Fill the json_name field of FieldDescriptorProto. void CopyJsonNameTo(DescriptorProto* proto) const; // Internal version of DebugString; controls the level of indenting for // correct depth. Takes |options| to control debug-string options, and // |include_opening_clause| to indicate whether the "message ... " part of the // clause has already been generated (this varies depending on context). void DebugString(int depth, std::string* contents, const DebugStringOptions& options, bool include_opening_clause) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; // True if this is a placeholder for an unknown type. bool is_placeholder_ : 1; // True if this is a placeholder and the type name wasn't fully-qualified. bool is_unqualified_placeholder_ : 1; // Well known type. Stored like this to conserve space. uint8_t well_known_type_ : 5; // This points to the last field _number_ that is part of the sequence // starting at 1, where // `desc->field(i)->number() == i + 1` // A value of `0` means no field matches. That is, there are no fields or the // first field is not field `1`. // Uses 16-bit to avoid extra padding. Unlikely to have more than 2^16 // sequentially numbered fields in a message. uint16_t sequential_field_limit_; int field_count_; // all_names_ = [name, full_name] const std::string* all_names_; const FileDescriptor* file_; const Descriptor* containing_type_; const MessageOptions* options_; // These arrays are separated from their sizes to minimize padding on 64-bit. FieldDescriptor* fields_; OneofDescriptor* oneof_decls_; Descriptor* nested_types_; EnumDescriptor* enum_types_; ExtensionRange* extension_ranges_; FieldDescriptor* extensions_; ReservedRange* reserved_ranges_; const std::string** reserved_names_; int oneof_decl_count_; int real_oneof_decl_count_; int nested_type_count_; int enum_type_count_; int extension_range_count_; int extension_count_; int reserved_range_count_; int reserved_name_count_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in descriptor.cc // and update them to initialize the field. // Must be constructed using DescriptorPool. Descriptor() {} friend class DescriptorBuilder; friend class DescriptorPool; friend class EnumDescriptor; friend class FieldDescriptor; friend class FileDescriptorTables; friend class OneofDescriptor; friend class MethodDescriptor; friend class FileDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Descriptor); }; // Describes a single field of a message. To get the descriptor for a given // field, first get the Descriptor for the message in which it is defined, // then call Descriptor::FindFieldByName(). To get a FieldDescriptor for // an extension, do one of the following: // - Get the Descriptor or FileDescriptor for its containing scope, then // call Descriptor::FindExtensionByName() or // FileDescriptor::FindExtensionByName(). // - Given a DescriptorPool, call DescriptorPool::FindExtensionByNumber() or // DescriptorPool::FindExtensionByPrintableName(). // Use DescriptorPool to construct your own descriptors. class PROTOBUF_EXPORT FieldDescriptor : private internal::SymbolBase { public: typedef FieldDescriptorProto Proto; // Identifies a field type. 0 is reserved for errors. The order is weird // for historical reasons. Types 12 and up are new in proto2. enum Type { TYPE_DOUBLE = 1, // double, exactly eight bytes on the wire. TYPE_FLOAT = 2, // float, exactly four bytes on the wire. TYPE_INT64 = 3, // int64, varint on the wire. Negative numbers // take 10 bytes. Use TYPE_SINT64 if negative // values are likely. TYPE_UINT64 = 4, // uint64, varint on the wire. TYPE_INT32 = 5, // int32, varint on the wire. Negative numbers // take 10 bytes. Use TYPE_SINT32 if negative // values are likely. TYPE_FIXED64 = 6, // uint64, exactly eight bytes on the wire. TYPE_FIXED32 = 7, // uint32, exactly four bytes on the wire. TYPE_BOOL = 8, // bool, varint on the wire. TYPE_STRING = 9, // UTF-8 text. TYPE_GROUP = 10, // Tag-delimited message. Deprecated. TYPE_MESSAGE = 11, // Length-delimited message. TYPE_BYTES = 12, // Arbitrary byte array. TYPE_UINT32 = 13, // uint32, varint on the wire TYPE_ENUM = 14, // Enum, varint on the wire TYPE_SFIXED32 = 15, // int32, exactly four bytes on the wire TYPE_SFIXED64 = 16, // int64, exactly eight bytes on the wire TYPE_SINT32 = 17, // int32, ZigZag-encoded varint on the wire TYPE_SINT64 = 18, // int64, ZigZag-encoded varint on the wire MAX_TYPE = 18, // Constant useful for defining lookup tables // indexed by Type. }; // Specifies the C++ data type used to represent the field. There is a // fixed mapping from Type to CppType where each Type maps to exactly one // CppType. 0 is reserved for errors. enum CppType { CPPTYPE_INT32 = 1, // TYPE_INT32, TYPE_SINT32, TYPE_SFIXED32 CPPTYPE_INT64 = 2, // TYPE_INT64, TYPE_SINT64, TYPE_SFIXED64 CPPTYPE_UINT32 = 3, // TYPE_UINT32, TYPE_FIXED32 CPPTYPE_UINT64 = 4, // TYPE_UINT64, TYPE_FIXED64 CPPTYPE_DOUBLE = 5, // TYPE_DOUBLE CPPTYPE_FLOAT = 6, // TYPE_FLOAT CPPTYPE_BOOL = 7, // TYPE_BOOL CPPTYPE_ENUM = 8, // TYPE_ENUM CPPTYPE_STRING = 9, // TYPE_STRING, TYPE_BYTES CPPTYPE_MESSAGE = 10, // TYPE_MESSAGE, TYPE_GROUP MAX_CPPTYPE = 10, // Constant useful for defining lookup tables // indexed by CppType. }; // Identifies whether the field is optional, required, or repeated. 0 is // reserved for errors. enum Label { LABEL_OPTIONAL = 1, // optional LABEL_REQUIRED = 2, // required LABEL_REPEATED = 3, // repeated MAX_LABEL = 3, // Constant useful for defining lookup tables // indexed by Label. }; // Valid field numbers are positive integers up to kMaxNumber. static const int kMaxNumber = (1 << 29) - 1; // First field number reserved for the protocol buffer library implementation. // Users may not declare fields that use reserved numbers. static const int kFirstReservedNumber = 19000; // Last field number reserved for the protocol buffer library implementation. // Users may not declare fields that use reserved numbers. static const int kLastReservedNumber = 19999; const std::string& name() const; // Name of this field within the message. const std::string& full_name() const; // Fully-qualified name of the field. const std::string& json_name() const; // JSON name of this field. const FileDescriptor* file() const; // File in which this field was defined. bool is_extension() const; // Is this an extension field? int number() const; // Declared tag number. // Same as name() except converted to lower-case. This (and especially the // FindFieldByLowercaseName() method) can be useful when parsing formats // which prefer to use lowercase naming style. (Although, technically // field names should be lowercased anyway according to the protobuf style // guide, so this only makes a difference when dealing with old .proto files // which do not follow the guide.) const std::string& lowercase_name() const; // Same as name() except converted to camel-case. In this conversion, any // time an underscore appears in the name, it is removed and the next // letter is capitalized. Furthermore, the first letter of the name is // lower-cased. Examples: // FooBar -> fooBar // foo_bar -> fooBar // fooBar -> fooBar // This (and especially the FindFieldByCamelcaseName() method) can be useful // when parsing formats which prefer to use camel-case naming style. const std::string& camelcase_name() const; Type type() const; // Declared type of this field. const char* type_name() const; // Name of the declared type. CppType cpp_type() const; // C++ type of this field. const char* cpp_type_name() const; // Name of the C++ type. Label label() const; // optional/required/repeated bool is_required() const; // shorthand for label() == LABEL_REQUIRED bool is_optional() const; // shorthand for label() == LABEL_OPTIONAL bool is_repeated() const; // shorthand for label() == LABEL_REPEATED bool is_packable() const; // shorthand for is_repeated() && // IsTypePackable(type()) bool is_packed() const; // shorthand for is_packable() && // options().packed() bool is_map() const; // shorthand for type() == TYPE_MESSAGE && // message_type()->options().map_entry() // Returns true if this field was syntactically written with "optional" in the // .proto file. Excludes singular proto3 fields that do not have a label. bool has_optional_keyword() const; // Returns true if this field tracks presence, ie. does the field // distinguish between "unset" and "present with default value." // This includes required, optional, and oneof fields. It excludes maps, // repeated fields, and singular proto3 fields without "optional". // // For fields where has_presence() == true, the return value of // Reflection::HasField() is semantically meaningful. bool has_presence() const; // Index of this field within the message's field array, or the file or // extension scope's extensions array. int index() const; // Does this field have an explicitly-declared default value? bool has_default_value() const; // Whether the user has specified the json_name field option in the .proto // file. bool has_json_name() const; // Get the field default value if cpp_type() == CPPTYPE_INT32. If no // explicit default was defined, the default is 0. int32_t default_value_int32_t() const; int32_t default_value_int32() const { return default_value_int32_t(); } // Get the field default value if cpp_type() == CPPTYPE_INT64. If no // explicit default was defined, the default is 0. int64_t default_value_int64_t() const; int64_t default_value_int64() const { return default_value_int64_t(); } // Get the field default value if cpp_type() == CPPTYPE_UINT32. If no // explicit default was defined, the default is 0. uint32_t default_value_uint32_t() const; uint32_t default_value_uint32() const { return default_value_uint32_t(); } // Get the field default value if cpp_type() == CPPTYPE_UINT64. If no // explicit default was defined, the default is 0. uint64_t default_value_uint64_t() const; uint64_t default_value_uint64() const { return default_value_uint64_t(); } // Get the field default value if cpp_type() == CPPTYPE_FLOAT. If no // explicit default was defined, the default is 0.0. float default_value_float() const; // Get the field default value if cpp_type() == CPPTYPE_DOUBLE. If no // explicit default was defined, the default is 0.0. double default_value_double() const; // Get the field default value if cpp_type() == CPPTYPE_BOOL. If no // explicit default was defined, the default is false. bool default_value_bool() const; // Get the field default value if cpp_type() == CPPTYPE_ENUM. If no // explicit default was defined, the default is the first value defined // in the enum type (all enum types are required to have at least one value). // This never returns nullptr. const EnumValueDescriptor* default_value_enum() const; // Get the field default value if cpp_type() == CPPTYPE_STRING. If no // explicit default was defined, the default is the empty string. const std::string& default_value_string() const; // The Descriptor for the message of which this is a field. For extensions, // this is the extended type. Never nullptr. const Descriptor* containing_type() const; // If the field is a member of a oneof, this is the one, otherwise this is // nullptr. const OneofDescriptor* containing_oneof() const; // If the field is a member of a non-synthetic oneof, returns the descriptor // for the oneof, otherwise returns nullptr. const OneofDescriptor* real_containing_oneof() const; // If the field is a member of a oneof, returns the index in that oneof. int index_in_oneof() const; // An extension may be declared within the scope of another message. If this // field is an extension (is_extension() is true), then extension_scope() // returns that message, or nullptr if the extension was declared at global // scope. If this is not an extension, extension_scope() is undefined (may // assert-fail). const Descriptor* extension_scope() const; // If type is TYPE_MESSAGE or TYPE_GROUP, returns a descriptor for the // message or the group type. Otherwise, returns null. const Descriptor* message_type() const; // If type is TYPE_ENUM, returns a descriptor for the enum. Otherwise, // returns null. const EnumDescriptor* enum_type() const; // Get the FieldOptions for this field. This includes things listed in // square brackets after the field definition. E.g., the field: // optional string text = 1 [ctype=CORD]; // has the "ctype" option set. Allowed options are defined by FieldOptions in // descriptor.proto, and any available extensions of that message. const FieldOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(FieldDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Helper method to get the CppType for a particular Type. static CppType TypeToCppType(Type type); // Helper method to get the name of a Type. static const char* TypeName(Type type); // Helper method to get the name of a CppType. static const char* CppTypeName(CppType cpp_type); // Return true iff [packed = true] is valid for fields of this type. static inline bool IsTypePackable(Type field_type); // Returns full_name() except if the field is a MessageSet extension, // in which case it returns the full_name() of the containing message type // for backwards compatibility with proto1. // // A MessageSet extension is defined as an optional message extension // whose containing type has the message_set_wire_format option set. // This should be true of extensions of google.protobuf.bridge.MessageSet; // by convention, such extensions are named "message_set_extension". // // The opposite operation (looking up an extension's FieldDescriptor given // its printable name) can be accomplished with // message->file()->pool()->FindExtensionByPrintableName(message, name) // where the extension extends "message". const std::string& PrintableNameForExtension() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this field declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef FieldOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; friend class Reflection; // Fill the json_name field of FieldDescriptorProto. void CopyJsonNameTo(FieldDescriptorProto* proto) const; // See Descriptor::DebugString(). void DebugString(int depth, std::string* contents, const DebugStringOptions& options) const; // formats the default value appropriately and returns it as a string. // Must have a default value to call this. If quote_string_type is true, then // types of CPPTYPE_STRING whill be surrounded by quotes and CEscaped. std::string DefaultValueAsString(bool quote_string_type) const; // Helper function that returns the field type name for DebugString. std::string FieldTypeNameDebugString() const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; // Returns true if this is a map message type. bool is_map_message_type() const; bool has_default_value_ : 1; bool proto3_optional_ : 1; // Whether the user has specified the json_name field option in the .proto // file. bool has_json_name_ : 1; bool is_extension_ : 1; bool is_oneof_ : 1; // Actually a `Label` but stored as uint8_t to save space. uint8_t label_ : 2; // Actually a `Type`, but stored as uint8_t to save space. mutable uint8_t type_; // Logically: // all_names_ = [name, full_name, lower, camel, json] // However: // duplicates will be omitted, so lower/camel/json might be in the same // position. // We store the true offset for each name here, and the bit width must be // large enough to account for the worst case where all names are present. uint8_t lowercase_name_index_ : 2; uint8_t camelcase_name_index_ : 2; uint8_t json_name_index_ : 3; // Sadly, `number_` located here to reduce padding. Unrelated to all_names_ // and its indices above. int number_; const std::string* all_names_; const FileDescriptor* file_; internal::once_flag* type_once_; static void TypeOnceInit(const FieldDescriptor* to_init); void InternalTypeOnceInit() const; const Descriptor* containing_type_; union { const OneofDescriptor* containing_oneof; const Descriptor* extension_scope; } scope_; union { mutable const Descriptor* message_type; mutable const EnumDescriptor* enum_type; const char* lazy_type_name; } type_descriptor_; const FieldOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. union { int32_t default_value_int32_t_; int64_t default_value_int64_t_; uint32_t default_value_uint32_t_; uint64_t default_value_uint64_t_; float default_value_float_; double default_value_double_; bool default_value_bool_; mutable const EnumValueDescriptor* default_value_enum_; const char* lazy_default_value_enum_name_; const std::string* default_value_string_; mutable std::atomic default_generated_instance_; }; static const CppType kTypeToCppTypeMap[MAX_TYPE + 1]; static const char* const kTypeToName[MAX_TYPE + 1]; static const char* const kCppTypeToName[MAX_CPPTYPE + 1]; static const char* const kLabelToName[MAX_LABEL + 1]; // Must be constructed using DescriptorPool. FieldDescriptor() {} friend class DescriptorBuilder; friend class FileDescriptor; friend class Descriptor; friend class OneofDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FieldDescriptor); }; // Describes a oneof defined in a message type. class PROTOBUF_EXPORT OneofDescriptor : private internal::SymbolBase { public: typedef OneofDescriptorProto Proto; const std::string& name() const; // Name of this oneof. const std::string& full_name() const; // Fully-qualified name of the oneof. // Index of this oneof within the message's oneof array. int index() const; // Returns whether this oneof was inserted by the compiler to wrap a proto3 // optional field. If this returns true, code generators should *not* emit it. bool is_synthetic() const; // The .proto file in which this oneof was defined. Never nullptr. const FileDescriptor* file() const; // The Descriptor for the message containing this oneof. const Descriptor* containing_type() const; // The number of (non-extension) fields which are members of this oneof. int field_count() const; // Get a member of this oneof, in the order in which they were declared in the // .proto file. Does not include extensions. const FieldDescriptor* field(int index) const; const OneofOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(OneofDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this oneof declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef OneofOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // See Descriptor::DebugString(). void DebugString(int depth, std::string* contents, const DebugStringOptions& options) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; int field_count_; // all_names_ = [name, full_name] const std::string* all_names_; const Descriptor* containing_type_; const OneofOptions* options_; const FieldDescriptor* fields_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() // in descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. OneofDescriptor() {} friend class DescriptorBuilder; friend class Descriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OneofDescriptor); }; // Describes an enum type defined in a .proto file. To get the EnumDescriptor // for a generated enum type, call TypeName_descriptor(). Use DescriptorPool // to construct your own descriptors. class PROTOBUF_EXPORT EnumDescriptor : private internal::SymbolBase { public: typedef EnumDescriptorProto Proto; // The name of this enum type in the containing scope. const std::string& name() const; // The fully-qualified name of the enum type, scope delimited by periods. const std::string& full_name() const; // Index of this enum within the file or containing message's enum array. int index() const; // The .proto file in which this enum type was defined. Never nullptr. const FileDescriptor* file() const; // The number of values for this EnumDescriptor. Guaranteed to be greater // than zero. int value_count() const; // Gets a value by index, where 0 <= index < value_count(). // These are returned in the order they were defined in the .proto file. const EnumValueDescriptor* value(int index) const; // Looks up a value by name. Returns nullptr if no such value exists. const EnumValueDescriptor* FindValueByName(ConstStringParam name) const; // Looks up a value by number. Returns nullptr if no such value exists. If // multiple values have this number, the first one defined is returned. const EnumValueDescriptor* FindValueByNumber(int number) const; // If this enum type is nested in a message type, this is that message type. // Otherwise, nullptr. const Descriptor* containing_type() const; // Get options for this enum type. These are specified in the .proto file by // placing lines like "option foo = 1234;" in the enum definition. Allowed // options are defined by EnumOptions in descriptor.proto, and any available // extensions of that message. const EnumOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(EnumDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Returns true if this is a placeholder for an unknown enum. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; // Reserved fields ------------------------------------------------- // A range of reserved field numbers. struct ReservedRange { int start; // inclusive int end; // inclusive }; // The number of reserved ranges in this message type. int reserved_range_count() const; // Gets an reserved range by index, where 0 <= index < // reserved_range_count(). These are returned in the order they were defined // in the .proto file. const EnumDescriptor::ReservedRange* reserved_range(int index) const; // Returns true if the number is in one of the reserved ranges. bool IsReservedNumber(int number) const; // Returns nullptr if no reserved range contains the given number. const EnumDescriptor::ReservedRange* FindReservedRangeContainingNumber( int number) const; // The number of reserved field names in this message type. int reserved_name_count() const; // Gets a reserved name by index, where 0 <= index < reserved_name_count(). const std::string& reserved_name(int index) const; // Returns true if the field name is reserved. bool IsReservedName(ConstStringParam name) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this enum declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef EnumOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // Allow access to FindValueByNumberCreatingIfUnknown. friend class descriptor_unittest::DescriptorTest; // Looks up a value by number. If the value does not exist, dynamically // creates a new EnumValueDescriptor for that value, assuming that it was // unknown. If a new descriptor is created, this is done in a thread-safe way, // and future calls will return the same value descriptor pointer. // // This is private but is used by Reflection (which is friended below) to // return a valid EnumValueDescriptor from GetEnum() when this feature is // enabled. const EnumValueDescriptor* FindValueByNumberCreatingIfUnknown( int number) const; // See Descriptor::DebugString(). void DebugString(int depth, std::string* contents, const DebugStringOptions& options) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; // True if this is a placeholder for an unknown type. bool is_placeholder_ : 1; // True if this is a placeholder and the type name wasn't fully-qualified. bool is_unqualified_placeholder_ : 1; // This points to the last value _index_ that is part of the sequence starting // with the first label, where // `enum->value(i)->number() == enum->value(0)->number() + i` // We measure relative to the first label to adapt to enum labels starting at // 0 or 1. // Uses 16-bit to avoid extra padding. Unlikely to have more than 2^15 // sequentially numbered labels in an enum. int16_t sequential_value_limit_; int value_count_; // all_names_ = [name, full_name] const std::string* all_names_; const FileDescriptor* file_; const Descriptor* containing_type_; const EnumOptions* options_; EnumValueDescriptor* values_; int reserved_range_count_; int reserved_name_count_; EnumDescriptor::ReservedRange* reserved_ranges_; const std::string** reserved_names_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. EnumDescriptor() {} friend class DescriptorBuilder; friend class Descriptor; friend class FieldDescriptor; friend class FileDescriptorTables; friend class EnumValueDescriptor; friend class FileDescriptor; friend class DescriptorPool; friend class Reflection; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumDescriptor); }; // Describes an individual enum constant of a particular type. To get the // EnumValueDescriptor for a given enum value, first get the EnumDescriptor // for its type, then use EnumDescriptor::FindValueByName() or // EnumDescriptor::FindValueByNumber(). Use DescriptorPool to construct // your own descriptors. class PROTOBUF_EXPORT EnumValueDescriptor : private internal::SymbolBaseN<0>, private internal::SymbolBaseN<1> { public: typedef EnumValueDescriptorProto Proto; const std::string& name() const; // Name of this enum constant. int index() const; // Index within the enums's Descriptor. int number() const; // Numeric value of this enum constant. // The full_name of an enum value is a sibling symbol of the enum type. // e.g. the full name of FieldDescriptorProto::TYPE_INT32 is actually // "google.protobuf.FieldDescriptorProto.TYPE_INT32", NOT // "google.protobuf.FieldDescriptorProto.Type.TYPE_INT32". This is to conform // with C++ scoping rules for enums. const std::string& full_name() const; // The .proto file in which this value was defined. Never nullptr. const FileDescriptor* file() const; // The type of this value. Never nullptr. const EnumDescriptor* type() const; // Get options for this enum value. These are specified in the .proto file by // adding text like "[foo = 1234]" after an enum value definition. Allowed // options are defined by EnumValueOptions in descriptor.proto, and any // available extensions of that message. const EnumValueOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(EnumValueDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this enum value declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef EnumValueOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // See Descriptor::DebugString(). void DebugString(int depth, std::string* contents, const DebugStringOptions& options) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; int number_; // all_names_ = [name, full_name] const std::string* all_names_; const EnumDescriptor* type_; const EnumValueOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() // in descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. EnumValueDescriptor() {} friend class DescriptorBuilder; friend class EnumDescriptor; friend class DescriptorPool; friend class FileDescriptorTables; friend class Reflection; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumValueDescriptor); }; // Describes an RPC service. Use DescriptorPool to construct your own // descriptors. class PROTOBUF_EXPORT ServiceDescriptor : private internal::SymbolBase { public: typedef ServiceDescriptorProto Proto; // The name of the service, not including its containing scope. const std::string& name() const; // The fully-qualified name of the service, scope delimited by periods. const std::string& full_name() const; // Index of this service within the file's services array. int index() const; // The .proto file in which this service was defined. Never nullptr. const FileDescriptor* file() const; // Get options for this service type. These are specified in the .proto file // by placing lines like "option foo = 1234;" in the service definition. // Allowed options are defined by ServiceOptions in descriptor.proto, and any // available extensions of that message. const ServiceOptions& options() const; // The number of methods this service defines. int method_count() const; // Gets a MethodDescriptor by index, where 0 <= index < method_count(). // These are returned in the order they were defined in the .proto file. const MethodDescriptor* method(int index) const; // Look up a MethodDescriptor by name. const MethodDescriptor* FindMethodByName(ConstStringParam name) const; // See Descriptor::CopyTo(). void CopyTo(ServiceDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this service declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef ServiceOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // See Descriptor::DebugString(). void DebugString(std::string* contents, const DebugStringOptions& options) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; // all_names_ = [name, full_name] const std::string* all_names_; const FileDescriptor* file_; const ServiceOptions* options_; MethodDescriptor* methods_; int method_count_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. ServiceDescriptor() {} friend class DescriptorBuilder; friend class FileDescriptor; friend class MethodDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ServiceDescriptor); }; // Describes an individual service method. To obtain a MethodDescriptor given // a service, first get its ServiceDescriptor, then call // ServiceDescriptor::FindMethodByName(). Use DescriptorPool to construct your // own descriptors. class PROTOBUF_EXPORT MethodDescriptor : private internal::SymbolBase { public: typedef MethodDescriptorProto Proto; // Name of this method, not including containing scope. const std::string& name() const; // The fully-qualified name of the method, scope delimited by periods. const std::string& full_name() const; // Index within the service's Descriptor. int index() const; // The .proto file in which this method was defined. Never nullptr. const FileDescriptor* file() const; // Gets the service to which this method belongs. Never nullptr. const ServiceDescriptor* service() const; // Gets the type of protocol message which this method accepts as input. const Descriptor* input_type() const; // Gets the type of protocol message which this message produces as output. const Descriptor* output_type() const; // Gets whether the client streams multiple requests. bool client_streaming() const; // Gets whether the server streams multiple responses. bool server_streaming() const; // Get options for this method. These are specified in the .proto file by // placing lines like "option foo = 1234;" in curly-braces after a method // declaration. Allowed options are defined by MethodOptions in // descriptor.proto, and any available extensions of that message. const MethodOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(MethodDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this method declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: friend class Symbol; typedef MethodOptions OptionsType; // Allows access to GetLocationPath for annotations. friend class io::Printer; friend class compiler::cpp::Formatter; // See Descriptor::DebugString(). void DebugString(int depth, std::string* contents, const DebugStringOptions& options) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(std::vector* output) const; bool client_streaming_; bool server_streaming_; // all_names_ = [name, full_name] const std::string* all_names_; const ServiceDescriptor* service_; mutable internal::LazyDescriptor input_type_; mutable internal::LazyDescriptor output_type_; const MethodOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. MethodDescriptor() {} friend class DescriptorBuilder; friend class ServiceDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MethodDescriptor); }; // Describes a whole .proto file. To get the FileDescriptor for a compiled-in // file, get the descriptor for something defined in that file and call // descriptor->file(). Use DescriptorPool to construct your own descriptors. class PROTOBUF_EXPORT FileDescriptor { public: typedef FileDescriptorProto Proto; // The filename, relative to the source tree. // e.g. "foo/bar/baz.proto" const std::string& name() const; // The package, e.g. "google.protobuf.compiler". const std::string& package() const; // The DescriptorPool in which this FileDescriptor and all its contents were // allocated. Never nullptr. const DescriptorPool* pool() const; // The number of files imported by this one. int dependency_count() const; // Gets an imported file by index, where 0 <= index < dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* dependency(int index) const; // The number of files public imported by this one. // The public dependency list is a subset of the dependency list. int public_dependency_count() const; // Gets a public imported file by index, where 0 <= index < // public_dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* public_dependency(int index) const; // The number of files that are imported for weak fields. // The weak dependency list is a subset of the dependency list. int weak_dependency_count() const; // Gets a weak imported file by index, where 0 <= index < // weak_dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* weak_dependency(int index) const; // Number of top-level message types defined in this file. (This does not // include nested types.) int message_type_count() const; // Gets a top-level message type, where 0 <= index < message_type_count(). // These are returned in the order they were defined in the .proto file. const Descriptor* message_type(int index) const; // Number of top-level enum types defined in this file. (This does not // include nested types.) int enum_type_count() const; // Gets a top-level enum type, where 0 <= index < enum_type_count(). // These are returned in the order they were defined in the .proto file. const EnumDescriptor* enum_type(int index) const; // Number of services defined in this file. int service_count() const; // Gets a service, where 0 <= index < service_count(). // These are returned in the order they were defined in the .proto file. const ServiceDescriptor* service(int index) const; // Number of extensions defined at file scope. (This does not include // extensions nested within message types.) int extension_count() const; // Gets an extension's descriptor, where 0 <= index < extension_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* extension(int index) const; // Get options for this file. These are specified in the .proto file by // placing lines like "option foo = 1234;" at the top level, outside of any // other definitions. Allowed options are defined by FileOptions in // descriptor.proto, and any available extensions of that message. const FileOptions& options() const; // Syntax of this file. enum Syntax { SYNTAX_UNKNOWN = 0, SYNTAX_PROTO2 = 2, SYNTAX_PROTO3 = 3, }; Syntax syntax() const; static const char* SyntaxName(Syntax syntax); // Find a top-level message type by name (not full_name). Returns nullptr if // not found. const Descriptor* FindMessageTypeByName(ConstStringParam name) const; // Find a top-level enum type by name. Returns nullptr if not found. const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const; // Find an enum value defined in any top-level enum by name. Returns nullptr // if not found. const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const; // Find a service definition by name. Returns nullptr if not found. const ServiceDescriptor* FindServiceByName(ConstStringParam name) const; // Find a top-level extension definition by name. Returns nullptr if not // found. const FieldDescriptor* FindExtensionByName(ConstStringParam name) const; // Similar to FindExtensionByName(), but searches by lowercased-name. See // Descriptor::FindFieldByLowercaseName(). const FieldDescriptor* FindExtensionByLowercaseName( ConstStringParam name) const; // Similar to FindExtensionByName(), but searches by camelcased-name. See // Descriptor::FindFieldByCamelcaseName(). const FieldDescriptor* FindExtensionByCamelcaseName( ConstStringParam name) const; // See Descriptor::CopyTo(). // Notes: // - This method does NOT copy source code information since it is relatively // large and rarely needed. See CopySourceCodeInfoTo() below. void CopyTo(FileDescriptorProto* proto) const; // Write the source code information of this FileDescriptor into the given // FileDescriptorProto. See CopyTo() above. void CopySourceCodeInfoTo(FileDescriptorProto* proto) const; // Fill the json_name field of FieldDescriptorProto for all fields. Can only // be called after CopyTo(). void CopyJsonNameTo(FileDescriptorProto* proto) const; // See Descriptor::DebugString(). std::string DebugString() const; // See Descriptor::DebugStringWithOptions(). std::string DebugStringWithOptions(const DebugStringOptions& options) const; // Returns true if this is a placeholder for an unknown file. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; // Updates |*out_location| to the source location of the complete extent of // this file declaration (namely, the empty path). bool GetSourceLocation(SourceLocation* out_location) const; // Updates |*out_location| to the source location of the complete // extent of the declaration or declaration-part denoted by |path|. // Returns false and leaves |*out_location| unchanged iff location // information was not available. (See SourceCodeInfo for // description of path encoding.) bool GetSourceLocation(const std::vector& path, SourceLocation* out_location) const; private: typedef FileOptions OptionsType; const std::string* name_; const std::string* package_; const DescriptorPool* pool_; // Data required to do lazy initialization. struct PROTOBUF_EXPORT LazyInitData { #ifndef SWIG internal::once_flag once; #endif const char** dependencies_names; }; LazyInitData* dependencies_once_; static void DependenciesOnceInit(const FileDescriptor* to_init); void InternalDependenciesOnceInit() const; // These are arranged to minimize padding on 64-bit. int dependency_count_; int public_dependency_count_; int weak_dependency_count_; int message_type_count_; int enum_type_count_; int service_count_; bool is_placeholder_; // Indicates the FileDescriptor is completed building. Used to verify // that type accessor functions that can possibly build a dependent file // aren't called during the process of building the file. bool finished_building_; // Actually a `Syntax` but stored as uint8_t to save space. uint8_t syntax_; // This one is here to fill the padding. int extension_count_; mutable const FileDescriptor** dependencies_; int* public_dependencies_; int* weak_dependencies_; Descriptor* message_types_; EnumDescriptor* enum_types_; ServiceDescriptor* services_; FieldDescriptor* extensions_; const FileOptions* options_; const FileDescriptorTables* tables_; const SourceCodeInfo* source_code_info_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. FileDescriptor() {} friend class DescriptorBuilder; friend class DescriptorPool; friend class Descriptor; friend class FieldDescriptor; friend class internal::LazyDescriptor; friend class OneofDescriptor; friend class EnumDescriptor; friend class EnumValueDescriptor; friend class MethodDescriptor; friend class ServiceDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FileDescriptor); }; // =================================================================== // Used to construct descriptors. // // Normally you won't want to build your own descriptors. Message classes // constructed by the protocol compiler will provide them for you. However, // if you are implementing Message on your own, or if you are writing a // program which can operate on totally arbitrary types and needs to load // them from some sort of database, you might need to. // // Since Descriptors are composed of a whole lot of cross-linked bits of // data that would be a pain to put together manually, the // DescriptorPool class is provided to make the process easier. It can // take a FileDescriptorProto (defined in descriptor.proto), validate it, // and convert it to a set of nicely cross-linked Descriptors. // // DescriptorPool also helps with memory management. Descriptors are // composed of many objects containing static data and pointers to each // other. In all likelihood, when it comes time to delete this data, // you'll want to delete it all at once. In fact, it is not uncommon to // have a whole pool of descriptors all cross-linked with each other which // you wish to delete all at once. This class represents such a pool, and // handles the memory management for you. // // You can also search for descriptors within a DescriptorPool by name, and // extensions by number. class PROTOBUF_EXPORT DescriptorPool { public: // Create a normal, empty DescriptorPool. DescriptorPool(); // Constructs a DescriptorPool that, when it can't find something among the // descriptors already in the pool, looks for it in the given // DescriptorDatabase. // Notes: // - If a DescriptorPool is constructed this way, its BuildFile*() methods // must not be called (they will assert-fail). The only way to populate // the pool with descriptors is to call the Find*By*() methods. // - The Find*By*() methods may block the calling thread if the // DescriptorDatabase blocks. This in turn means that parsing messages // may block if they need to look up extensions. // - The Find*By*() methods will use mutexes for thread-safety, thus making // them slower even when they don't have to fall back to the database. // In fact, even the Find*By*() methods of descriptor objects owned by // this pool will be slower, since they will have to obtain locks too. // - An ErrorCollector may optionally be given to collect validation errors // in files loaded from the database. If not given, errors will be printed // to GOOGLE_LOG(ERROR). Remember that files are built on-demand, so this // ErrorCollector may be called from any thread that calls one of the // Find*By*() methods. // - The DescriptorDatabase must not be mutated during the lifetime of // the DescriptorPool. Even if the client takes care to avoid data races, // changes to the content of the DescriptorDatabase may not be reflected // in subsequent lookups in the DescriptorPool. class ErrorCollector; explicit DescriptorPool(DescriptorDatabase* fallback_database, ErrorCollector* error_collector = nullptr); ~DescriptorPool(); // Get a pointer to the generated pool. Generated protocol message classes // which are compiled into the binary will allocate their descriptors in // this pool. Do not add your own descriptors to this pool. static const DescriptorPool* generated_pool(); // Find a FileDescriptor in the pool by file name. Returns nullptr if not // found. const FileDescriptor* FindFileByName(ConstStringParam name) const; // Find the FileDescriptor in the pool which defines the given symbol. // If any of the Find*ByName() methods below would succeed, then this is // equivalent to calling that method and calling the result's file() method. // Otherwise this returns nullptr. const FileDescriptor* FindFileContainingSymbol( ConstStringParam symbol_name) const; // Looking up descriptors ------------------------------------------ // These find descriptors by fully-qualified name. These will find both // top-level descriptors and nested descriptors. They return nullptr if not // found. const Descriptor* FindMessageTypeByName(ConstStringParam name) const; const FieldDescriptor* FindFieldByName(ConstStringParam name) const; const FieldDescriptor* FindExtensionByName(ConstStringParam name) const; const OneofDescriptor* FindOneofByName(ConstStringParam name) const; const EnumDescriptor* FindEnumTypeByName(ConstStringParam name) const; const EnumValueDescriptor* FindEnumValueByName(ConstStringParam name) const; const ServiceDescriptor* FindServiceByName(ConstStringParam name) const; const MethodDescriptor* FindMethodByName(ConstStringParam name) const; // Finds an extension of the given type by number. The extendee must be // a member of this DescriptorPool or one of its underlays. const FieldDescriptor* FindExtensionByNumber(const Descriptor* extendee, int number) const; // Finds an extension of the given type by its printable name. // See comments above PrintableNameForExtension() for the definition of // "printable name". The extendee must be a member of this DescriptorPool // or one of its underlays. Returns nullptr if there is no known message // extension with the given printable name. const FieldDescriptor* FindExtensionByPrintableName( const Descriptor* extendee, ConstStringParam printable_name) const; // Finds extensions of extendee. The extensions will be appended to // out in an undefined order. Only extensions defined directly in // this DescriptorPool or one of its underlays are guaranteed to be // found: extensions defined in the fallback database might not be found // depending on the database implementation. void FindAllExtensions(const Descriptor* extendee, std::vector* out) const; // Building descriptors -------------------------------------------- // When converting a FileDescriptorProto to a FileDescriptor, various // errors might be detected in the input. The caller may handle these // programmatically by implementing an ErrorCollector. class PROTOBUF_EXPORT ErrorCollector { public: inline ErrorCollector() {} virtual ~ErrorCollector(); // These constants specify what exact part of the construct is broken. // This is useful e.g. for mapping the error back to an exact location // in a .proto file. enum ErrorLocation { NAME, // the symbol name, or the package name for files NUMBER, // field or extension range number TYPE, // field type EXTENDEE, // field extendee DEFAULT_VALUE, // field default value INPUT_TYPE, // method input type OUTPUT_TYPE, // method output type OPTION_NAME, // name in assignment OPTION_VALUE, // value in option assignment IMPORT, // import error OTHER // some other problem }; // Reports an error in the FileDescriptorProto. Use this function if the // problem occurred should interrupt building the FileDescriptorProto. virtual void AddError( const std::string& filename, // File name in which the error occurred. const std::string& element_name, // Full name of the erroneous element. const Message* descriptor, // Descriptor of the erroneous element. ErrorLocation location, // One of the location constants, above. const std::string& message // Human-readable error message. ) = 0; // Reports a warning in the FileDescriptorProto. Use this function if the // problem occurred should NOT interrupt building the FileDescriptorProto. virtual void AddWarning( const std::string& /*filename*/, // File name in which the error // occurred. const std::string& /*element_name*/, // Full name of the erroneous // element. const Message* /*descriptor*/, // Descriptor of the erroneous element. ErrorLocation /*location*/, // One of the location constants, above. const std::string& /*message*/ // Human-readable error message. ) {} private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ErrorCollector); }; // Convert the FileDescriptorProto to real descriptors and place them in // this DescriptorPool. All dependencies of the file must already be in // the pool. Returns the resulting FileDescriptor, or nullptr if there were // problems with the input (e.g. the message was invalid, or dependencies // were missing). Details about the errors are written to GOOGLE_LOG(ERROR). const FileDescriptor* BuildFile(const FileDescriptorProto& proto); // Same as BuildFile() except errors are sent to the given ErrorCollector. const FileDescriptor* BuildFileCollectingErrors( const FileDescriptorProto& proto, ErrorCollector* error_collector); // By default, it is an error if a FileDescriptorProto contains references // to types or other files that are not found in the DescriptorPool (or its // backing DescriptorDatabase, if any). If you call // AllowUnknownDependencies(), however, then unknown types and files // will be replaced by placeholder descriptors (which can be identified by // the is_placeholder() method). This can allow you to // perform some useful operations with a .proto file even if you do not // have access to other .proto files on which it depends. However, some // heuristics must be used to fill in the gaps in information, and these // can lead to descriptors which are inaccurate. For example, the // DescriptorPool may be forced to guess whether an unknown type is a message // or an enum, as well as what package it resides in. Furthermore, // placeholder types will not be discoverable via FindMessageTypeByName() // and similar methods, which could confuse some descriptor-based algorithms. // Generally, the results of this option should be handled with extreme care. void AllowUnknownDependencies() { allow_unknown_ = true; } // By default, weak imports are allowed to be missing, in which case we will // use a placeholder for the dependency and convert the field to be an Empty // message field. If you call EnforceWeakDependencies(true), however, the // DescriptorPool will report a import not found error. void EnforceWeakDependencies(bool enforce) { enforce_weak_ = enforce; } // Internal stuff -------------------------------------------------- // These methods MUST NOT be called from outside the proto2 library. // These methods may contain hidden pitfalls and may be removed in a // future library version. // Create a DescriptorPool which is overlaid on top of some other pool. // If you search for a descriptor in the overlay and it is not found, the // underlay will be searched as a backup. If the underlay has its own // underlay, that will be searched next, and so on. This also means that // files built in the overlay will be cross-linked with the underlay's // descriptors if necessary. The underlay remains property of the caller; // it must remain valid for the lifetime of the newly-constructed pool. // // Example: Say you want to parse a .proto file at runtime in order to use // its type with a DynamicMessage. Say this .proto file has dependencies, // but you know that all the dependencies will be things that are already // compiled into the binary. For ease of use, you'd like to load the types // right out of generated_pool() rather than have to parse redundant copies // of all these .protos and runtime. But, you don't want to add the parsed // types directly into generated_pool(): this is not allowed, and would be // bad design anyway. So, instead, you could use generated_pool() as an // underlay for a new DescriptorPool in which you add only the new file. // // WARNING: Use of underlays can lead to many subtle gotchas. Instead, // try to formulate what you want to do in terms of DescriptorDatabases. explicit DescriptorPool(const DescriptorPool* underlay); // Called by generated classes at init time to add their descriptors to // generated_pool. Do NOT call this in your own code! filename must be a // permanent string (e.g. a string literal). static void InternalAddGeneratedFile(const void* encoded_file_descriptor, int size); // Disallow [enforce_utf8 = false] in .proto files. void DisallowEnforceUtf8() { disallow_enforce_utf8_ = true; } // For internal use only: Gets a non-const pointer to the generated pool. // This is called at static-initialization time only, so thread-safety is // not a concern. If both an underlay and a fallback database are present, // the underlay takes precedence. static DescriptorPool* internal_generated_pool(); // For internal use only: Gets a non-const pointer to the generated // descriptor database. // Only used for testing. static DescriptorDatabase* internal_generated_database(); // For internal use only: Changes the behavior of BuildFile() such that it // allows the file to make reference to message types declared in other files // which it did not officially declare as dependencies. void InternalDontEnforceDependencies(); // For internal use only: Enables lazy building of dependencies of a file. // Delay the building of dependencies of a file descriptor until absolutely // necessary, like when message_type() is called on a field that is defined // in that dependency's file. This will cause functional issues if a proto // or one of its dependencies has errors. Should only be enabled for the // generated_pool_ (because no descriptor build errors are guaranteed by // the compilation generation process), testing, or if a lack of descriptor // build errors can be guaranteed for a pool. void InternalSetLazilyBuildDependencies() { lazily_build_dependencies_ = true; // This needs to be set when lazily building dependencies, as it breaks // dependency checking. InternalDontEnforceDependencies(); } // For internal use only. void internal_set_underlay(const DescriptorPool* underlay) { underlay_ = underlay; } // For internal (unit test) use only: Returns true if a FileDescriptor has // been constructed for the given file, false otherwise. Useful for testing // lazy descriptor initialization behavior. bool InternalIsFileLoaded(ConstStringParam filename) const; // Add a file to unused_import_track_files_. DescriptorBuilder will log // warnings or errors for those files if there is any unused import. void AddUnusedImportTrackFile(ConstStringParam file_name, bool is_error = false); void ClearUnusedImportTrackFiles(); private: friend class Descriptor; friend class internal::LazyDescriptor; friend class FieldDescriptor; friend class EnumDescriptor; friend class ServiceDescriptor; friend class MethodDescriptor; friend class FileDescriptor; friend class StreamDescriptor; friend class DescriptorBuilder; friend class FileDescriptorTables; // Return true if the given name is a sub-symbol of any non-package // descriptor that already exists in the descriptor pool. (The full // definition of such types is already known.) bool IsSubSymbolOfBuiltType(StringPiece name) const; // Tries to find something in the fallback database and link in the // corresponding proto file. Returns true if successful, in which case // the caller should search for the thing again. These are declared // const because they are called by (semantically) const methods. bool TryFindFileInFallbackDatabase(StringPiece name) const; bool TryFindSymbolInFallbackDatabase(StringPiece name) const; bool TryFindExtensionInFallbackDatabase(const Descriptor* containing_type, int field_number) const; // This internal find extension method only check with its table and underlay // descriptor_pool's table. It does not check with fallback DB and no // additional proto file will be build in this method. const FieldDescriptor* InternalFindExtensionByNumberNoLock( const Descriptor* extendee, int number) const; // Like BuildFile() but called internally when the file has been loaded from // fallback_database_. Declared const because it is called by (semantically) // const methods. const FileDescriptor* BuildFileFromDatabase( const FileDescriptorProto& proto) const; // Helper for when lazily_build_dependencies_ is set, can look up a symbol // after the file's descriptor is built, and can build the file where that // symbol is defined if necessary. Will create a placeholder if the type // doesn't exist in the fallback database, or the file doesn't build // successfully. Symbol CrossLinkOnDemandHelper(StringPiece name, bool expecting_enum) const; // Create a placeholder FileDescriptor of the specified name FileDescriptor* NewPlaceholderFile(StringPiece name) const; FileDescriptor* NewPlaceholderFileWithMutexHeld(StringPiece name) const; enum PlaceholderType { PLACEHOLDER_MESSAGE, PLACEHOLDER_ENUM, PLACEHOLDER_EXTENDABLE_MESSAGE }; // Create a placeholder Descriptor of the specified name Symbol NewPlaceholder(StringPiece name, PlaceholderType placeholder_type) const; Symbol NewPlaceholderWithMutexHeld(StringPiece name, PlaceholderType placeholder_type) const; // If fallback_database_ is nullptr, this is nullptr. Otherwise, this is a // mutex which must be locked while accessing tables_. internal::WrappedMutex* mutex_; // See constructor. DescriptorDatabase* fallback_database_; ErrorCollector* default_error_collector_; const DescriptorPool* underlay_; // This class contains a lot of hash maps with complicated types that // we'd like to keep out of the header. class Tables; std::unique_ptr tables_; bool enforce_dependencies_; bool lazily_build_dependencies_; bool allow_unknown_; bool enforce_weak_; bool disallow_enforce_utf8_; // Set of files to track for unused imports. The bool value when true means // unused imports are treated as errors (and as warnings when false). std::map unused_import_track_files_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DescriptorPool); }; // inline methods ==================================================== // These macros makes this repetitive code more readable. #define PROTOBUF_DEFINE_ACCESSOR(CLASS, FIELD, TYPE) \ inline TYPE CLASS::FIELD() const { return FIELD##_; } // Strings fields are stored as pointers but returned as const references. #define PROTOBUF_DEFINE_STRING_ACCESSOR(CLASS, FIELD) \ inline const std::string& CLASS::FIELD() const { return *FIELD##_; } // Name and full name are stored in a single array to save space. #define PROTOBUF_DEFINE_NAME_ACCESSOR(CLASS) \ inline const std::string& CLASS::name() const { return all_names_[0]; } \ inline const std::string& CLASS::full_name() const { return all_names_[1]; } // Arrays take an index parameter, obviously. #define PROTOBUF_DEFINE_ARRAY_ACCESSOR(CLASS, FIELD, TYPE) \ inline TYPE CLASS::FIELD(int index) const { return FIELD##s_ + index; } #define PROTOBUF_DEFINE_OPTIONS_ACCESSOR(CLASS, TYPE) \ inline const TYPE& CLASS::options() const { return *options_; } PROTOBUF_DEFINE_NAME_ACCESSOR(Descriptor) PROTOBUF_DEFINE_ACCESSOR(Descriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, field_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, oneof_decl_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, real_oneof_decl_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, nested_type_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, enum_type_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, field, const FieldDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, oneof_decl, const OneofDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, nested_type, const Descriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, enum_type, const EnumDescriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_range_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension_range, const Descriptor::ExtensionRange*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension, const FieldDescriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, reserved_range_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, reserved_range, const Descriptor::ReservedRange*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, reserved_name_count, int) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(Descriptor, MessageOptions) PROTOBUF_DEFINE_ACCESSOR(Descriptor, is_placeholder, bool) PROTOBUF_DEFINE_NAME_ACCESSOR(FieldDescriptor) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, number, int) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, is_extension, bool) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FieldDescriptor, FieldOptions) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, has_default_value, bool) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, has_json_name, bool) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int32_t, int32_t) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int64_t, int64_t) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint32_t, uint32_t) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint64_t, uint64_t) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_float, float) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_double, double) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_bool, bool) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, default_value_string) PROTOBUF_DEFINE_NAME_ACCESSOR(OneofDescriptor) PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, field_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(OneofDescriptor, field, const FieldDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(OneofDescriptor, OneofOptions) PROTOBUF_DEFINE_NAME_ACCESSOR(EnumDescriptor) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, value_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(EnumDescriptor, value, const EnumValueDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumDescriptor, EnumOptions) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, is_placeholder, bool) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, reserved_range_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(EnumDescriptor, reserved_range, const EnumDescriptor::ReservedRange*) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, reserved_name_count, int) PROTOBUF_DEFINE_NAME_ACCESSOR(EnumValueDescriptor) PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, number, int) PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, type, const EnumDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumValueDescriptor, EnumValueOptions) PROTOBUF_DEFINE_NAME_ACCESSOR(ServiceDescriptor) PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, method_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(ServiceDescriptor, method, const MethodDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(ServiceDescriptor, ServiceOptions) PROTOBUF_DEFINE_NAME_ACCESSOR(MethodDescriptor) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, service, const ServiceDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(MethodDescriptor, MethodOptions) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, client_streaming, bool) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, server_streaming, bool) PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, package) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, pool, const DescriptorPool*) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, public_dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, weak_dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, message_type_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, enum_type_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, service_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, extension_count, int) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FileDescriptor, FileOptions) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, is_placeholder, bool) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, message_type, const Descriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, enum_type, const EnumDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, service, const ServiceDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, extension, const FieldDescriptor*) #undef PROTOBUF_DEFINE_ACCESSOR #undef PROTOBUF_DEFINE_STRING_ACCESSOR #undef PROTOBUF_DEFINE_ARRAY_ACCESSOR // A few accessors differ from the macros... inline Descriptor::WellKnownType Descriptor::well_known_type() const { return static_cast(well_known_type_); } inline bool Descriptor::IsExtensionNumber(int number) const { return FindExtensionRangeContainingNumber(number) != nullptr; } inline bool Descriptor::IsReservedNumber(int number) const { return FindReservedRangeContainingNumber(number) != nullptr; } inline bool Descriptor::IsReservedName(ConstStringParam name) const { for (int i = 0; i < reserved_name_count(); i++) { if (name == static_cast(reserved_name(i))) { return true; } } return false; } // Can't use PROTOBUF_DEFINE_ARRAY_ACCESSOR because reserved_names_ is actually // an array of pointers rather than the usual array of objects. inline const std::string& Descriptor::reserved_name(int index) const { return *reserved_names_[index]; } inline bool EnumDescriptor::IsReservedNumber(int number) const { return FindReservedRangeContainingNumber(number) != nullptr; } inline bool EnumDescriptor::IsReservedName(ConstStringParam name) const { for (int i = 0; i < reserved_name_count(); i++) { if (name == static_cast(reserved_name(i))) { return true; } } return false; } // Can't use PROTOBUF_DEFINE_ARRAY_ACCESSOR because reserved_names_ is actually // an array of pointers rather than the usual array of objects. inline const std::string& EnumDescriptor::reserved_name(int index) const { return *reserved_names_[index]; } inline const std::string& FieldDescriptor::lowercase_name() const { return all_names_[lowercase_name_index_]; } inline const std::string& FieldDescriptor::camelcase_name() const { return all_names_[camelcase_name_index_]; } inline const std::string& FieldDescriptor::json_name() const { return all_names_[json_name_index_]; } inline const OneofDescriptor* FieldDescriptor::containing_oneof() const { return is_oneof_ ? scope_.containing_oneof : nullptr; } inline int FieldDescriptor::index_in_oneof() const { GOOGLE_DCHECK(is_oneof_); return static_cast(this - scope_.containing_oneof->field(0)); } inline const Descriptor* FieldDescriptor::extension_scope() const { GOOGLE_CHECK(is_extension_); return scope_.extension_scope; } inline FieldDescriptor::Label FieldDescriptor::label() const { return static_cast