// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { class UnknownFieldSet; class DescriptorPool; class MessageFactory; namespace internal { // Template code below needs to know about the existence of these functions. PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s); PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, StringPiece val, std::string* s); // Inline because it is just forwarding to s->WriteVarint inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s); inline void WriteLengthDelimited(uint32_t num, StringPiece val, UnknownFieldSet* s); // The basic abstraction the parser is designed for is a slight modification // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized // stream as a series of buffers that concatenate to the full stream. // Pictorially a ZCIS presents a stream in chunks like so // [---------------------------------------------------------------] // [---------------------] chunk 1 // [----------------------------] chunk 2 // chunk 3 [--------------] // // Where the '-' represent the bytes which are vertically lined up with the // bytes of the stream. The proto parser requires its input to be presented // similarly with the extra // property that each chunk has kSlopBytes past its end that overlaps with the // first kSlopBytes of the next chunk, or if there is no next chunk at least its // still valid to read those bytes. Again, pictorially, we now have // // [---------------------------------------------------------------] // [-------------------....] chunk 1 // [------------------------....] chunk 2 // chunk 3 [------------------..**] // chunk 4 [--****] // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the // chunk that match up with the start of the next chunk. Above each chunk has // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes // past the stream, indicated by '*' above, their values are unspecified. It is // still legal to read them (ie. should not segfault). Reading past the // end should be detected by the user and indicated as an error. // // The reason for this, admittedly, unconventional invariant is to ruthlessly // optimize the protobuf parser. Having an overlap helps in two important ways. // Firstly it alleviates having to performing bounds checks if a piece of code // is guaranteed to not read more than kSlopBytes. Secondly, and more // importantly, the protobuf wireformat is such that reading a key/value pair is // always less than 16 bytes. This removes the need to change to next buffer in // the middle of reading primitive values. Hence there is no need to store and // load the current position. class PROTOBUF_EXPORT EpsCopyInputStream { public: enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 }; explicit EpsCopyInputStream(bool enable_aliasing) : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} void BackUp(const char* ptr) { GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes); int count; if (next_chunk_ == buffer_) { count = static_cast(buffer_end_ + kSlopBytes - ptr); } else { count = size_ + static_cast(buffer_end_ - ptr); } if (count > 0) StreamBackUp(count); } // If return value is negative it's an error PROTOBUF_NODISCARD int PushLimit(const char* ptr, int limit) { GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); // This add is safe due to the invariant above, because // ptr - buffer_end_ <= kSlopBytes. limit += static_cast(ptr - buffer_end_); limit_end_ = buffer_end_ + (std::min)(0, limit); auto old_limit = limit_; limit_ = limit; return old_limit - limit; } PROTOBUF_NODISCARD bool PopLimit(int delta) { if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false; limit_ = limit_ + delta; // TODO(gerbens) We could remove this line and hoist the code to // DoneFallback. Study the perf/bin-size effects. limit_end_ = buffer_end_ + (std::min)(0, limit_); return true; } PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) { if (size <= buffer_end_ + kSlopBytes - ptr) { return ptr + size; } return SkipFallback(ptr, size); } PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size, std::string* s) { if (size <= buffer_end_ + kSlopBytes - ptr) { s->assign(ptr, size); return ptr + size; } return ReadStringFallback(ptr, size, s); } PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size, std::string* s) { if (size <= buffer_end_ + kSlopBytes - ptr) { s->append(ptr, size); return ptr + size; } return AppendStringFallback(ptr, size, s); } // Implemented in arenastring.cc PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr, ArenaStringPtr* s, Arena* arena); template PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr, Tag expected_tag, RepeatedField* out); template PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size, RepeatedField* out); template PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add); uint32_t LastTag() const { return last_tag_minus_1_ + 1; } bool ConsumeEndGroup(uint32_t start_tag) { bool res = last_tag_minus_1_ == start_tag; last_tag_minus_1_ = 0; return res; } bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; } void SetEndOfStream() { last_tag_minus_1_ = 1; } bool IsExceedingLimit(const char* ptr) { return ptr > limit_end_ && (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); } int BytesUntilLimit(const char* ptr) const { return limit_ + static_cast(buffer_end_ - ptr); } // Returns true if more data is available, if false is returned one has to // call Done for further checks. bool DataAvailable(const char* ptr) { return ptr < limit_end_; } protected: // Returns true is limit (either an explicit limit or end of stream) is // reached. It aligns *ptr across buffer seams. // If limit is exceeded it returns true and ptr is set to null. bool DoneWithCheck(const char** ptr, int d) { GOOGLE_DCHECK(*ptr); if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false; int overrun = static_cast(*ptr - buffer_end_); GOOGLE_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop. if (overrun == limit_) { // No need to flip buffers if we ended on a limit. // If we actually overrun the buffer and next_chunk_ is null. It means // the stream ended and we passed the stream end. if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr; return true; } auto res = DoneFallback(overrun, d); *ptr = res.first; return res.second; } const char* InitFrom(StringPiece flat) { overall_limit_ = 0; if (flat.size() > kSlopBytes) { limit_ = kSlopBytes; limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; next_chunk_ = buffer_; if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; return flat.data(); } else { std::memcpy(buffer_, flat.data(), flat.size()); limit_ = 0; limit_end_ = buffer_end_ = buffer_ + flat.size(); next_chunk_ = nullptr; if (aliasing_ == kOnPatch) { aliasing_ = reinterpret_cast(flat.data()) - reinterpret_cast(buffer_); } return buffer_; } } const char* InitFrom(io::ZeroCopyInputStream* zcis); const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { if (limit == -1) return InitFrom(zcis); overall_limit_ = limit; auto res = InitFrom(zcis); limit_ = limit - static_cast(buffer_end_ - res); limit_end_ = buffer_end_ + (std::min)(0, limit_); return res; } private: const char* limit_end_; // buffer_end_ + min(limit_, 0) const char* buffer_end_; const char* next_chunk_; int size_; int limit_; // relative to buffer_end_; io::ZeroCopyInputStream* zcis_ = nullptr; char buffer_[2 * kSlopBytes] = {}; enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; std::uintptr_t aliasing_ = kNoAliasing; // This variable is used to communicate how the parse ended, in order to // completely verify the parsed data. A wire-format parse can end because of // one of the following conditions: // 1) A parse can end on a pushed limit. // 2) A parse can end on End Of Stream (EOS). // 3) A parse can end on 0 tag (only valid for toplevel message). // 4) A parse can end on an end-group tag. // This variable should always be set to 0, which indicates case 1. If the // parse terminated due to EOS (case 2), it's set to 1. In case the parse // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). // This var doesn't really belong in EpsCopyInputStream and should be part of // the ParseContext, but case 2 is most easily and optimally implemented in // DoneFallback. uint32_t last_tag_minus_1_ = 0; int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. // Pretty random large number that seems like a safe allocation on most // systems. TODO(gerbens) do we need to set this as build flag? enum { kSafeStringSize = 50000000 }; // Advances to next buffer chunk returns a pointer to the same logical place // in the stream as set by overrun. Overrun indicates the position in the slop // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at // limit, at which point the returned pointer maybe null if there was an // error. The invariant of this function is that it's guaranteed that // kSlopBytes bytes can be accessed from the returned ptr. This function might // advance more buffers than one in the underlying ZeroCopyInputStream. std::pair DoneFallback(int overrun, int depth); // Advances to the next buffer, at most one call to Next() on the underlying // ZeroCopyInputStream is made. This function DOES NOT match the returned // pointer to where in the slop region the parse ends, hence no overrun // parameter. This is useful for string operations where you always copy // to the end of the buffer (including the slop region). const char* Next(); // overrun is the location in the slop region the stream currently is // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of // the ZeroCopyInputStream in the case the parse will end in the last // kSlopBytes of the current buffer. depth is the current depth of nested // groups (or negative if the use case does not need careful tracking). inline const char* NextBuffer(int overrun, int depth); const char* SkipFallback(const char* ptr, int size); const char* AppendStringFallback(const char* ptr, int size, std::string* str); const char* ReadStringFallback(const char* ptr, int size, std::string* str); bool StreamNext(const void** data) { bool res = zcis_->Next(data, &size_); if (res) overall_limit_ -= size_; return res; } void StreamBackUp(int count) { zcis_->BackUp(count); overall_limit_ += count; } template const char* AppendSize(const char* ptr, int size, const A& append) { int chunk_size = buffer_end_ + kSlopBytes - ptr; do { GOOGLE_DCHECK(size > chunk_size); if (next_chunk_ == nullptr) return nullptr; append(ptr, chunk_size); ptr += chunk_size; size -= chunk_size; // TODO(gerbens) Next calls NextBuffer which generates buffers with // overlap and thus incurs cost of copying the slop regions. This is not // necessary for reading strings. We should just call Next buffers. if (limit_ <= kSlopBytes) return nullptr; ptr = Next(); if (ptr == nullptr) return nullptr; // passed the limit ptr += kSlopBytes; chunk_size = buffer_end_ + kSlopBytes - ptr; } while (size > chunk_size); append(ptr, size); return ptr + size; } // AppendUntilEnd appends data until a limit (either a PushLimit or end of // stream. Normal payloads are from length delimited fields which have an // explicit size. Reading until limit only comes when the string takes // the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and // implicit weak messages. We keep these methods private and friend them. template const char* AppendUntilEnd(const char* ptr, const A& append) { if (ptr - buffer_end_ > limit_) return nullptr; while (limit_ > kSlopBytes) { size_t chunk_size = buffer_end_ + kSlopBytes - ptr; append(ptr, chunk_size); ptr = Next(); if (ptr == nullptr) return limit_end_; ptr += kSlopBytes; } auto end = buffer_end_ + limit_; GOOGLE_DCHECK(end >= ptr); append(ptr, end - ptr); return end; } PROTOBUF_NODISCARD const char* AppendString(const char* ptr, std::string* str) { return AppendUntilEnd( ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); } friend class ImplicitWeakMessage; }; // ParseContext holds all data that is global to the entire parse. Most // importantly it contains the input stream, but also recursion depth and also // stores the end group tag, in case a parser ended on a endgroup, to verify // matching start/end group tags. class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { public: struct Data { const DescriptorPool* pool = nullptr; MessageFactory* factory = nullptr; Arena* arena = nullptr; }; template ParseContext(int depth, bool aliasing, const char** start, T&&... args) : EpsCopyInputStream(aliasing), depth_(depth) { *start = InitFrom(std::forward(args)...); } void TrackCorrectEnding() { group_depth_ = 0; } bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } int depth() const { return depth_; } Data& data() { return data_; } const Data& data() const { return data_; } const char* ParseMessage(MessageLite* msg, const char* ptr); // This overload supports those few cases where ParseMessage is called // on a class that is not actually a proto message. // TODO(jorg): Eliminate this use case. template ::value, bool>::type = true> PROTOBUF_NODISCARD const char* ParseMessage(T* msg, const char* ptr); template PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup( T* msg, const char* ptr, uint32_t tag) { if (--depth_ < 0) return nullptr; group_depth_++; ptr = msg->_InternalParse(ptr, this); group_depth_--; depth_++; if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; return ptr; } private: // Out-of-line routine to save space in ParseContext::ParseMessage // int old; // ptr = ReadSizeAndPushLimitAndDepth(ptr, &old) // is equivalent to: // int size = ReadSize(&ptr); // if (!ptr) return nullptr; // int old = PushLimit(ptr, size); // if (--depth_ < 0) return nullptr; PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(const char* ptr, int* old_limit); // The context keeps an internal stack to keep track of the recursive // part of the parse state. // Current depth of the active parser, depth counts down. // This is used to limit recursion depth (to prevent overflow on malicious // data), but is also used to index in stack_ to store the current state. int depth_; // Unfortunately necessary for the fringe case of ending on 0 or end-group tag // in the last kSlopBytes of a ZeroCopyInputStream chunk. int group_depth_ = INT_MIN; Data data_; }; template bool ExpectTag(const char* ptr) { if (tag < 128) { return *ptr == static_cast(tag); } else { static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes"); char buf[2] = {static_cast(tag | 0x80), static_cast(tag >> 7)}; return std::memcmp(ptr, buf, 2) == 0; } } template struct EndianHelper; template <> struct EndianHelper<1> { static uint8_t Load(const void* p) { return *static_cast(p); } }; template <> struct EndianHelper<2> { static uint16_t Load(const void* p) { uint16_t tmp; std::memcpy(&tmp, p, 2); #ifndef PROTOBUF_LITTLE_ENDIAN tmp = bswap_16(tmp); #endif return tmp; } }; template <> struct EndianHelper<4> { static uint32_t Load(const void* p) { uint32_t tmp; std::memcpy(&tmp, p, 4); #ifndef PROTOBUF_LITTLE_ENDIAN tmp = bswap_32(tmp); #endif return tmp; } }; template <> struct EndianHelper<8> { static uint64_t Load(const void* p) { uint64_t tmp; std::memcpy(&tmp, p, 8); #ifndef PROTOBUF_LITTLE_ENDIAN tmp = bswap_64(tmp); #endif return tmp; } }; template T UnalignedLoad(const char* p) { auto tmp = EndianHelper::Load(p); T res; memcpy(&res, &tmp, sizeof(T)); return res; } PROTOBUF_EXPORT std::pair VarintParseSlow32(const char* p, uint32_t res); PROTOBUF_EXPORT std::pair VarintParseSlow64(const char* p, uint32_t res); inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { auto tmp = VarintParseSlow32(p, res); *out = tmp.second; return tmp.first; } inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { auto tmp = VarintParseSlow64(p, res); *out = tmp.second; return tmp.first; } template PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) { auto ptr = reinterpret_cast(p); uint32_t res = ptr[0]; if (!(res & 0x80)) { *out = res; return p + 1; } uint32_t byte = ptr[1]; res += (byte - 1) << 7; if (!(byte & 0x80)) { *out = res; return p + 2; } return VarintParseSlow(p, res, out); } // Used for tags, could read up to 5 bytes which must be available. // Caller must ensure its safe to call. PROTOBUF_EXPORT std::pair ReadTagFallback(const char* p, uint32_t res); // Same as ParseVarint but only accept 5 bytes at most. inline const char* ReadTag(const char* p, uint32_t* out, uint32_t /*max_tag*/ = 0) { uint32_t res = static_cast(p[0]); if (res < 128) { *out = res; return p + 1; } uint32_t second = static_cast(p[1]); res += (second - 1) << 7; if (second < 128) { *out = res; return p + 2; } auto tmp = ReadTagFallback(p, res); *out = tmp.second; return tmp.first; } // Decode 2 consecutive bytes of a varint and returns the value, shifted left // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the // first byte's continuation bit is set. // If bit 15 of return value is set (equivalent to the continuation bits of both // bytes being set) the varint continues, otherwise the parse is done. On x86 // movsx eax, dil // add edi, eax // adc [rsi], 1 // add eax, eax // and eax, edi inline uint32_t DecodeTwoBytes(const char** ptr) { uint32_t value = UnalignedLoad(*ptr); // Sign extend the low byte continuation bit uint32_t x = static_cast(value); // This add is an amazing operation, it cancels the low byte continuation bit // from y transferring it to the carry. Simultaneously it also shifts the 7 // LSB left by one tightly against high byte varint bits. Hence value now // contains the unpacked value shifted left by 1. value += x; // Use the carry to update the ptr appropriately. *ptr += value < x ? 2 : 1; return value & (x + x); // Mask out the high byte iff no continuation } // More efficient varint parsing for big varints inline const char* ParseBigVarint(const char* p, uint64_t* out) { auto pnew = p; auto tmp = DecodeTwoBytes(&pnew); uint64_t res = tmp >> 1; if (PROTOBUF_PREDICT_TRUE(static_cast(tmp) >= 0)) { *out = res; return pnew; } for (std::uint32_t i = 1; i < 5; i++) { pnew = p + 2 * i; tmp = DecodeTwoBytes(&pnew); res += (static_cast(tmp) - 2) << (14 * i - 1); if (PROTOBUF_PREDICT_TRUE(static_cast(tmp) >= 0)) { *out = res; return pnew; } } return nullptr; } PROTOBUF_EXPORT std::pair ReadSizeFallback(const char* p, uint32_t first); // Used for tags, could read up to 5 bytes which must be available. Additionally // it makes sure the unsigned value fits a int32_t, otherwise returns nullptr. // Caller must ensure its safe to call. inline uint32_t ReadSize(const char** pp) { auto p = *pp; uint32_t res = static_cast(p[0]); if (res < 128) { *pp = p + 1; return res; } auto x = ReadSizeFallback(p, res); *pp = x.first; return x.second; } // Some convenience functions to simplify the generated parse loop code. // Returning the value and updating the buffer pointer allows for nicer // function composition. We rely on the compiler to inline this. // Also in debug compiles having local scoped variables tend to generated // stack frames that scale as O(num fields). inline uint64_t ReadVarint64(const char** p) { uint64_t tmp; *p = VarintParse(*p, &tmp); return tmp; } inline uint32_t ReadVarint32(const char** p) { uint32_t tmp; *p = VarintParse(*p, &tmp); return tmp; } inline int64_t ReadVarintZigZag64(const char** p) { uint64_t tmp; *p = VarintParse(*p, &tmp); return WireFormatLite::ZigZagDecode64(tmp); } inline int32_t ReadVarintZigZag32(const char** p) { uint64_t tmp; *p = VarintParse(*p, &tmp); return WireFormatLite::ZigZagDecode32(static_cast(tmp)); } template ::value, bool>::type> PROTOBUF_NODISCARD const char* ParseContext::ParseMessage(T* msg, const char* ptr) { int old; ptr = ReadSizeAndPushLimitAndDepth(ptr, &old); ptr = ptr ? msg->_InternalParse(ptr, this) : nullptr; depth_++; if (!PopLimit(old)) return nullptr; return ptr; } template const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr, Tag expected_tag, RepeatedField* out) { do { out->Add(UnalignedLoad(ptr)); ptr += sizeof(T); if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr; } while (UnalignedLoad(ptr) == expected_tag && (ptr += sizeof(Tag))); return ptr; } // Add any of the following lines to debug which parse function is failing. #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ if (!(predicate)) { \ /* ::raise(SIGINT); */ \ /* GOOGLE_LOG(ERROR) << "Parse failure"; */ \ return ret; \ } #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) template const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size, RepeatedField* out) { GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); int nbytes = buffer_end_ + kSlopBytes - ptr; while (size > nbytes) { int num = nbytes / sizeof(T); int old_entries = out->size(); out->Reserve(old_entries + num); int block_size = num * sizeof(T); auto dst = out->AddNAlreadyReserved(num); #ifdef PROTOBUF_LITTLE_ENDIAN std::memcpy(dst, ptr, block_size); #else for (int i = 0; i < num; i++) dst[i] = UnalignedLoad(ptr + i * sizeof(T)); #endif size -= block_size; if (limit_ <= kSlopBytes) return nullptr; ptr = Next(); if (ptr == nullptr) return nullptr; ptr += kSlopBytes - (nbytes - block_size); nbytes = buffer_end_ + kSlopBytes - ptr; } int num = size / sizeof(T); int old_entries = out->size(); out->Reserve(old_entries + num); int block_size = num * sizeof(T); auto dst = out->AddNAlreadyReserved(num); #ifdef PROTOBUF_LITTLE_ENDIAN std::memcpy(dst, ptr, block_size); #else for (int i = 0; i < num; i++) dst[i] = UnalignedLoad(ptr + i * sizeof(T)); #endif ptr += block_size; if (size != block_size) return nullptr; return ptr; } template const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { while (ptr < end) { uint64_t varint; ptr = VarintParse(ptr, &varint); if (ptr == nullptr) return nullptr; add(varint); } return ptr; } template const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) { int size = ReadSize(&ptr); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); int chunk_size = buffer_end_ - ptr; while (size > chunk_size) { ptr = ReadPackedVarintArray(ptr, buffer_end_, add); if (ptr == nullptr) return nullptr; int overrun = ptr - buffer_end_; GOOGLE_DCHECK(overrun >= 0 && overrun <= kSlopBytes); if (size - chunk_size <= kSlopBytes) { // The current buffer contains all the information needed, we don't need // to flip buffers. However we must parse from a buffer with enough space // so we are not prone to a buffer overflow. char buf[kSlopBytes + 10] = {}; std::memcpy(buf, buffer_end_, kSlopBytes); GOOGLE_CHECK_LE(size - chunk_size, kSlopBytes); auto end = buf + (size - chunk_size); auto res = ReadPackedVarintArray(buf + overrun, end, add); if (res == nullptr || res != end) return nullptr; return buffer_end_ + (res - buf); } size -= overrun + chunk_size; GOOGLE_DCHECK_GT(size, 0); // We must flip buffers if (limit_ <= kSlopBytes) return nullptr; ptr = Next(); if (ptr == nullptr) return nullptr; ptr += overrun; chunk_size = buffer_end_ - ptr; } auto end = ptr + size; ptr = ReadPackedVarintArray(ptr, end, add); return end == ptr ? ptr : nullptr; } // Helper for verification of utf8 PROTOBUF_EXPORT bool VerifyUTF8(StringPiece s, const char* field_name); inline bool VerifyUTF8(const std::string* s, const char* field_name) { return VerifyUTF8(*s, field_name); } // All the string parsers with or without UTF checking and for all CTypes. PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* InlineGreedyStringParser( std::string* s, const char* ptr, ParseContext* ctx); template PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser, const char* ptr, ParseContext* ctx) { uint32_t number = tag >> 3; GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); using WireType = internal::WireFormatLite::WireType; switch (tag & 7) { case WireType::WIRETYPE_VARINT: { uint64_t value; ptr = VarintParse(ptr, &value); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); field_parser.AddVarint(number, value); break; } case WireType::WIRETYPE_FIXED64: { uint64_t value = UnalignedLoad(ptr); ptr += 8; field_parser.AddFixed64(number, value); break; } case WireType::WIRETYPE_LENGTH_DELIMITED: { ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); break; } case WireType::WIRETYPE_START_GROUP: { ptr = field_parser.ParseGroup(number, ptr, ctx); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); break; } case WireType::WIRETYPE_END_GROUP: { GOOGLE_LOG(FATAL) << "Can't happen"; break; } case WireType::WIRETYPE_FIXED32: { uint32_t value = UnalignedLoad(ptr); ptr += 4; field_parser.AddFixed32(number, value); break; } default: return nullptr; } return ptr; } template PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser, const char* ptr, ParseContext* ctx) { while (!ctx->Done(&ptr)) { uint32_t tag; ptr = ReadTag(ptr, &tag); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); if (tag == 0 || (tag & 7) == 4) { ctx->SetLastTag(tag); return ptr; } ptr = FieldParser(tag, field_parser, ptr, ctx); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); } return ptr; } // The packed parsers parse repeated numeric primitives directly into the // corresponding field // These are packed varints PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt32Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt32Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedInt64Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedUInt64Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt32Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSInt64Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedEnumParser( void* object, const char* ptr, ParseContext* ctx); template PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr, ParseContext* ctx, bool (*is_valid)(int), InternalMetadata* metadata, int field_num) { return ctx->ReadPackedVarint( ptr, [object, is_valid, metadata, field_num](uint64_t val) { if (is_valid(val)) { static_cast*>(object)->Add(val); } else { WriteVarint(field_num, val, metadata->mutable_unknown_fields()); } }); } template PROTOBUF_NODISCARD const char* PackedEnumParserArg( void* object, const char* ptr, ParseContext* ctx, bool (*is_valid)(const void*, int), const void* data, InternalMetadata* metadata, int field_num) { return ctx->ReadPackedVarint( ptr, [object, is_valid, data, metadata, field_num](uint64_t val) { if (is_valid(data, val)) { static_cast*>(object)->Add(val); } else { WriteVarint(field_num, val, metadata->mutable_unknown_fields()); } }); } PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedBoolParser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed32Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed32Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFixed64Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedSFixed64Parser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedFloatParser( void* object, const char* ptr, ParseContext* ctx); PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* PackedDoubleParser( void* object, const char* ptr, ParseContext* ctx); // This is the only recursive parser. PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownGroupLiteParse( std::string* unknown, const char* ptr, ParseContext* ctx); // This is a helper to for the UnknownGroupLiteParse but is actually also // useful in the generated code. It uses overload on std::string* vs // UnknownFieldSet* to make the generated code isomorphic between full and lite. PROTOBUF_EXPORT PROTOBUF_NODISCARD const char* UnknownFieldParse( uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx); } // namespace internal } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__