import colorcet as cc from colorcet.plotting import swatches, sine_combs import holoviews as hv import panel as pn hv.extension('bokeh') diverging_n = cc.all_original_names(group='diverging', only_aliased=True) linear_n = cc.all_original_names(group='linear', not_group='diverging', only_aliased=True) cat_n = cc.all_original_names(group='glasbey', only_aliased=True) misc_n = sorted([k for k in cc.aliases if k not in cat_n + diverging_n + linear_n]) diverging_col = pn.Column('#Diverging', sine_combs(*diverging_n, width=400, height=150).opts(toolbar=None)) linear_col = pn.Column('#Linear', sine_combs(*linear_n, width=400, height=150).opts(toolbar=None)) cat_col = pn.Column('#Categorical', swatches(*cat_n, width=400, height=150, cols=1).opts(toolbar=None)) misc_col = pn.Column('#Misc', sine_combs(*misc_n, width=400, height=150).opts(toolbar=None)) all_named = pn.Row( linear_col, pn.Spacer(width=100), pn.Column( diverging_col, pn.Spacer(height=102), cat_col, pn.Spacer(height=102), misc_col)) all_named.save('./images/named.png')