""" EA-compatible analogue to to np.putmask """ from __future__ import annotations from typing import Any import numpy as np from pandas._libs import lib from pandas._typing import ( ArrayLike, npt, ) from pandas.core.dtypes.cast import ( can_hold_element, convert_scalar_for_putitemlike, find_common_type, infer_dtype_from, ) from pandas.core.dtypes.common import is_list_like from pandas.core.arrays import ExtensionArray def putmask_inplace(values: ArrayLike, mask: npt.NDArray[np.bool_], value: Any) -> None: """ ExtensionArray-compatible implementation of np.putmask. The main difference is we do not handle repeating or truncating like numpy. Parameters ---------- values: np.ndarray or ExtensionArray mask : np.ndarray[bool] We assume extract_bool_array has already been called. value : Any """ if lib.is_scalar(value) and isinstance(values, np.ndarray): value = convert_scalar_for_putitemlike(value, values.dtype) if ( not isinstance(values, np.ndarray) or (values.dtype == object and not lib.is_scalar(value)) # GH#43424: np.putmask raises TypeError if we cannot cast between types with # rule = "safe", a stricter guarantee we may not have here or ( isinstance(value, np.ndarray) and not np.can_cast(value.dtype, values.dtype) ) ): # GH#19266 using np.putmask gives unexpected results with listlike value # along with object dtype if is_list_like(value) and len(value) == len(values): values[mask] = value[mask] else: values[mask] = value else: # GH#37833 np.putmask is more performant than __setitem__ np.putmask(values, mask, value) def putmask_smart(values: np.ndarray, mask: npt.NDArray[np.bool_], new) -> np.ndarray: """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- values : np.ndarray `values`, updated in-place. mask : np.ndarray[bool] Applies to both sides (array like). new : listlike `new values` aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- np.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # see if we are only masking values that if putted # will work in the current dtype try: nn = new[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # We only get to putmask_smart when we cannot hold 'new' in values. # The "smart" part of putmask_smart is checking if we can hold new[mask] # in values, in which case we can still avoid the need to cast. if can_hold_element(values, nn): values[mask] = nn return values new = np.asarray(new) if values.dtype.kind == new.dtype.kind: # preserves dtype if possible np.putmask(values, mask, new) return values dtype = find_common_type([values.dtype, new.dtype]) values = values.astype(dtype) np.putmask(values, mask, new) return values def putmask_without_repeat( values: np.ndarray, mask: npt.NDArray[np.bool_], new: Any ) -> None: """ np.putmask will truncate or repeat if `new` is a listlike with len(new) != len(values). We require an exact match. Parameters ---------- values : np.ndarray mask : np.ndarray[bool] new : Any """ if getattr(new, "ndim", 0) >= 1: new = new.astype(values.dtype, copy=False) # TODO: this prob needs some better checking for 2D cases nlocs = mask.sum() if nlocs > 0 and is_list_like(new) and getattr(new, "ndim", 1) == 1: if nlocs == len(new): # GH#30567 # If length of ``new`` is less than the length of ``values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``values`` np.place(values, mask, new) # i.e. values[mask] = new elif mask.shape[-1] == len(new) or len(new) == 1: np.putmask(values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(values, mask, new) def validate_putmask( values: ArrayLike, mask: np.ndarray ) -> tuple[npt.NDArray[np.bool_], bool]: """ Validate mask and check if this putmask operation is a no-op. """ mask = extract_bool_array(mask) if mask.shape != values.shape: raise ValueError("putmask: mask and data must be the same size") noop = not mask.any() return mask, noop def extract_bool_array(mask: ArrayLike) -> npt.NDArray[np.bool_]: """ If we have a SparseArray or BooleanArray, convert it to ndarray[bool]. """ if isinstance(mask, ExtensionArray): # We could have BooleanArray, Sparse[bool], ... # Except for BooleanArray, this is equivalent to just # np.asarray(mask, dtype=bool) mask = mask.to_numpy(dtype=bool, na_value=False) mask = np.asarray(mask, dtype=bool) return mask def setitem_datetimelike_compat(values: np.ndarray, num_set: int, other): """ Parameters ---------- values : np.ndarray num_set : int For putmask, this is mask.sum() other : Any """ if values.dtype == object: dtype, _ = infer_dtype_from(other, pandas_dtype=True) if isinstance(dtype, np.dtype) and dtype.kind in ["m", "M"]: # https://github.com/numpy/numpy/issues/12550 # timedelta64 will incorrectly cast to int if not is_list_like(other): other = [other] * num_set else: other = list(other) return other