""" miscellaneous sorting / groupby utilities """ from __future__ import annotations from collections import defaultdict from typing import ( TYPE_CHECKING, Callable, DefaultDict, Hashable, Iterable, Sequence, ) import warnings import numpy as np from pandas._libs import ( algos, hashtable, lib, ) from pandas._libs.hashtable import unique_label_indices from pandas._typing import ( IndexKeyFunc, Shape, npt, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_extension_array_dtype, ) from pandas.core.dtypes.generic import ( ABCMultiIndex, ABCRangeIndex, ) from pandas.core.dtypes.missing import isna from pandas.core.construction import extract_array if TYPE_CHECKING: from pandas import MultiIndex from pandas.core.indexes.base import Index def get_indexer_indexer( target: Index, level: str | int | list[str] | list[int], ascending: Sequence[bool | int] | bool | int, kind: str, na_position: str, sort_remaining: bool, key: IndexKeyFunc, ) -> np.ndarray | None: """ Helper method that return the indexer according to input parameters for the sort_index method of DataFrame and Series. Parameters ---------- target : Index level : int or level name or list of ints or list of level names ascending : bool or list of bools, default True kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort' na_position : {'first', 'last'}, default 'last' sort_remaining : bool, default True key : callable, optional Returns ------- Optional[ndarray] The indexer for the new index. """ target = ensure_key_mapped(target, key, levels=level) target = target._sort_levels_monotonic() if level is not None: _, indexer = target.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(target, ABCMultiIndex): indexer = lexsort_indexer( target._get_codes_for_sorting(), orders=ascending, na_position=na_position ) else: # Check monotonic-ness before sort an index (GH 11080) if (ascending and target.is_monotonic_increasing) or ( not ascending and target.is_monotonic_decreasing ): return None indexer = nargsort( target, kind=kind, ascending=ascending, na_position=na_position ) return indexer def get_group_index( labels, shape: Shape, sort: bool, xnull: bool ) -> npt.NDArray[np.int64]: """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations, *as long as* this space fits within int64 bounds; otherwise, though group indices identify unique combinations of labels, they cannot be deconstructed. - If `sort`, rank of returned ids preserve lexical ranks of labels. i.e. returned id's can be used to do lexical sort on labels; - If `xnull` nulls (-1 labels) are passed through. Parameters ---------- labels : sequence of arrays Integers identifying levels at each location shape : tuple[int, ...] Number of unique levels at each location sort : bool If the ranks of returned ids should match lexical ranks of labels xnull : bool If true nulls are excluded. i.e. -1 values in the labels are passed through. Returns ------- An array of type int64 where two elements are equal if their corresponding labels are equal at all location. Notes ----- The length of `labels` and `shape` must be identical. """ def _int64_cut_off(shape) -> int: acc = 1 for i, mul in enumerate(shape): acc *= int(mul) if not acc < lib.i8max: return i return len(shape) def maybe_lift(lab, size) -> tuple[np.ndarray, int]: # promote nan values (assigned -1 label in lab array) # so that all output values are non-negative return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) labels = [ensure_int64(x) for x in labels] lshape = list(shape) if not xnull: for i, (lab, size) in enumerate(zip(labels, shape)): lab, size = maybe_lift(lab, size) labels[i] = lab lshape[i] = size labels = list(labels) # Iteratively process all the labels in chunks sized so less # than lib.i8max unique int ids will be required for each chunk while True: # how many levels can be done without overflow: nlev = _int64_cut_off(lshape) # compute flat ids for the first `nlev` levels stride = np.prod(lshape[1:nlev], dtype="i8") out = stride * labels[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): if lshape[i] == 0: stride = np.int64(0) else: stride //= lshape[i] out += labels[i] * stride if xnull: # exclude nulls mask = labels[0] == -1 for lab in labels[1:nlev]: mask |= lab == -1 out[mask] = -1 if nlev == len(lshape): # all levels done! break # compress what has been done so far in order to avoid overflow # to retain lexical ranks, obs_ids should be sorted comp_ids, obs_ids = compress_group_index(out, sort=sort) labels = [comp_ids] + labels[nlev:] lshape = [len(obs_ids)] + lshape[nlev:] return out def get_compressed_ids( labels, sizes: Shape ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). Parameters ---------- labels : list of label arrays sizes : tuple[int] of size of the levels Returns ------- np.ndarray[np.intp] comp_ids np.ndarray[np.int64] obs_group_ids """ ids = get_group_index(labels, sizes, sort=True, xnull=False) return compress_group_index(ids, sort=True) def is_int64_overflow_possible(shape) -> bool: the_prod = 1 for x in shape: the_prod *= int(x) return the_prod >= lib.i8max def decons_group_index(comp_labels, shape): # reconstruct labels if is_int64_overflow_possible(shape): # at some point group indices are factorized, # and may not be deconstructed here! wrong path! raise ValueError("cannot deconstruct factorized group indices!") label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def decons_obs_group_ids( comp_ids: npt.NDArray[np.intp], obs_ids, shape, labels, xnull: bool ): """ Reconstruct labels from observed group ids. Parameters ---------- comp_ids : np.ndarray[np.intp] xnull : bool If nulls are excluded; i.e. -1 labels are passed through. """ if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype="i8") shape = np.asarray(shape, dtype="i8") + lift if not is_int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)] indexer = unique_label_indices(comp_ids) return [lab[indexer].astype(np.intp, subok=False, copy=True) for lab in labels] def indexer_from_factorized( labels, shape: Shape, compress: bool = True ) -> npt.NDArray[np.intp]: ids = get_group_index(labels, shape, sort=True, xnull=False) if not compress: ngroups = (ids.size and ids.max()) + 1 else: ids, obs = compress_group_index(ids, sort=True) ngroups = len(obs) return get_group_index_sorter(ids, ngroups) def lexsort_indexer( keys, orders=None, na_position: str = "last", key: Callable | None = None ) -> npt.NDArray[np.intp]: """ Performs lexical sorting on a set of keys Parameters ---------- keys : sequence of arrays Sequence of ndarrays to be sorted by the indexer orders : bool or list of booleans, optional Determines the sorting order for each element in keys. If a list, it must be the same length as keys. This determines whether the corresponding element in keys should be sorted in ascending (True) or descending (False) order. if bool, applied to all elements as above. if None, defaults to True. na_position : {'first', 'last'}, default 'last' Determines placement of NA elements in the sorted list ("last" or "first") key : Callable, optional Callable key function applied to every element in keys before sorting .. versionadded:: 1.0.0 Returns ------- np.ndarray[np.intp] """ from pandas.core.arrays import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) keys = [ensure_key_mapped(k, key) for k in keys] for k, order in zip(keys, orders): with warnings.catch_warnings(): # TODO(2.0): unnecessary once deprecation is enforced # GH#45618 don't issue warning user can't do anything about warnings.filterwarnings("ignore", ".*SparseArray.*", category=FutureWarning) cat = Categorical(k, ordered=True) if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {na_position}") n = len(cat.categories) codes = cat.codes.copy() mask = cat.codes == -1 if order: # ascending if na_position == "last": codes = np.where(mask, n, codes) elif na_position == "first": codes += 1 else: # not order means descending if na_position == "last": codes = np.where(mask, n, n - codes - 1) elif na_position == "first": codes = np.where(mask, 0, n - codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return indexer_from_factorized(labels, tuple(shape)) def nargsort( items, kind: str = "quicksort", ascending: bool = True, na_position: str = "last", key: Callable | None = None, mask: np.ndarray | None = None, ) -> npt.NDArray[np.intp]: """ Intended to be a drop-in replacement for np.argsort which handles NaNs. Adds ascending, na_position, and key parameters. (GH #6399, #5231, #27237) Parameters ---------- kind : str, default 'quicksort' ascending : bool, default True na_position : {'first', 'last'}, default 'last' key : Optional[Callable], default None mask : Optional[np.ndarray], default None Passed when called by ExtensionArray.argsort. Returns ------- np.ndarray[np.intp] """ if key is not None: items = ensure_key_mapped(items, key) return nargsort( items, kind=kind, ascending=ascending, na_position=na_position, key=None, mask=mask, ) if isinstance(items, ABCRangeIndex): return items.argsort(ascending=ascending) # TODO: test coverage with key? elif not isinstance(items, ABCMultiIndex): items = extract_array(items) if mask is None: mask = np.asarray(isna(items)) # TODO: does this exclude MultiIndex too? if is_extension_array_dtype(items): return items.argsort(ascending=ascending, kind=kind, na_position=na_position) else: items = np.asanyarray(items) idx = np.arange(len(items)) non_nans = items[~mask] non_nan_idx = idx[~mask] nan_idx = np.nonzero(mask)[0] if not ascending: non_nans = non_nans[::-1] non_nan_idx = non_nan_idx[::-1] indexer = non_nan_idx[non_nans.argsort(kind=kind)] if not ascending: indexer = indexer[::-1] # Finally, place the NaNs at the end or the beginning according to # na_position if na_position == "last": indexer = np.concatenate([indexer, nan_idx]) elif na_position == "first": indexer = np.concatenate([nan_idx, indexer]) else: raise ValueError(f"invalid na_position: {na_position}") return ensure_platform_int(indexer) def nargminmax(values, method: str, axis: int = 0): """ Implementation of np.argmin/argmax but for ExtensionArray and which handles missing values. Parameters ---------- values : ExtensionArray method : {"argmax", "argmin"} axis : int, default 0 Returns ------- int """ assert method in {"argmax", "argmin"} func = np.argmax if method == "argmax" else np.argmin mask = np.asarray(isna(values)) values = values._values_for_argsort() if values.ndim > 1: if mask.any(): if axis == 1: zipped = zip(values, mask) else: zipped = zip(values.T, mask.T) return np.array([_nanargminmax(v, m, func) for v, m in zipped]) return func(values, axis=axis) return _nanargminmax(values, mask, func) def _nanargminmax(values, mask, func) -> int: """ See nanargminmax.__doc__. """ idx = np.arange(values.shape[0]) non_nans = values[~mask] non_nan_idx = idx[~mask] return non_nan_idx[func(non_nans)] def _ensure_key_mapped_multiindex( index: MultiIndex, key: Callable, level=None ) -> MultiIndex: """ Returns a new MultiIndex in which key has been applied to all levels specified in level (or all levels if level is None). Used for key sorting for MultiIndex. Parameters ---------- index : MultiIndex Index to which to apply the key function on the specified levels. key : Callable Function that takes an Index and returns an Index of the same shape. This key is applied to each level separately. The name of the level can be used to distinguish different levels for application. level : list-like, int or str, default None Level or list of levels to apply the key function to. If None, key function is applied to all levels. Other levels are left unchanged. Returns ------- labels : MultiIndex Resulting MultiIndex with modified levels. """ if level is not None: if isinstance(level, (str, int)): sort_levels = [level] else: sort_levels = level sort_levels = [index._get_level_number(lev) for lev in sort_levels] else: sort_levels = list(range(index.nlevels)) # satisfies mypy mapped = [ ensure_key_mapped(index._get_level_values(level), key) if level in sort_levels else index._get_level_values(level) for level in range(index.nlevels) ] return type(index).from_arrays(mapped) def ensure_key_mapped(values, key: Callable | None, levels=None): """ Applies a callable key function to the values function and checks that the resulting value has the same shape. Can be called on Index subclasses, Series, DataFrames, or ndarrays. Parameters ---------- values : Series, DataFrame, Index subclass, or ndarray key : Optional[Callable], key to be called on the values array levels : Optional[List], if values is a MultiIndex, list of levels to apply the key to. """ from pandas.core.indexes.api import Index if not key: return values if isinstance(values, ABCMultiIndex): return _ensure_key_mapped_multiindex(values, key, level=levels) result = key(values.copy()) if len(result) != len(values): raise ValueError( "User-provided `key` function must not change the shape of the array." ) try: if isinstance( values, Index ): # convert to a new Index subclass, not necessarily the same result = Index(result) else: type_of_values = type(values) result = type_of_values(result) # try to revert to original type otherwise except TypeError: raise TypeError( f"User-provided `key` function returned an invalid type {type(result)} \ which could not be converted to {type(values)}." ) return result def get_flattened_list( comp_ids: npt.NDArray[np.intp], ngroups: int, levels: Iterable[Index], labels: Iterable[np.ndarray], ) -> list[tuple]: """Map compressed group id -> key tuple.""" comp_ids = comp_ids.astype(np.int64, copy=False) arrays: DefaultDict[int, list[int]] = defaultdict(list) for labs, level in zip(labels, levels): table = hashtable.Int64HashTable(ngroups) table.map(comp_ids, labs.astype(np.int64, copy=False)) for i in range(ngroups): arrays[i].append(level[table.get_item(i)]) return [tuple(array) for array in arrays.values()] def get_indexer_dict( label_list: list[np.ndarray], keys: list[Index] ) -> dict[Hashable, npt.NDArray[np.intp]]: """ Returns ------- dict: Labels mapped to indexers. """ shape = [len(x) for x in keys] group_index = get_group_index(label_list, tuple(shape), sort=True, xnull=True) if np.all(group_index == -1): # Short-circuit, lib.indices_fast will return the same return {} ngroups = ( ((group_index.size and group_index.max()) + 1) if is_int64_overflow_possible(shape) else np.prod(shape, dtype="i8") ) sorter = get_group_index_sorter(group_index, ngroups) sorted_labels = [lab.take(sorter) for lab in label_list] group_index = group_index.take(sorter) return lib.indices_fast(sorter, group_index, keys, sorted_labels) # ---------------------------------------------------------------------- # sorting levels...cleverly? def get_group_index_sorter( group_index: npt.NDArray[np.intp], ngroups: int | None = None ) -> npt.NDArray[np.intp]: """ algos.groupsort_indexer implements `counting sort` and it is at least O(ngroups), where ngroups = prod(shape) shape = map(len, keys) that is, linear in the number of combinations (cartesian product) of unique values of groupby keys. This can be huge when doing multi-key groupby. np.argsort(kind='mergesort') is O(count x log(count)) where count is the length of the data-frame; Both algorithms are `stable` sort and that is necessary for correctness of groupby operations. e.g. consider: df.groupby(key)[col].transform('first') Parameters ---------- group_index : np.ndarray[np.intp] signed integer dtype ngroups : int or None, default None Returns ------- np.ndarray[np.intp] """ if ngroups is None: ngroups = 1 + group_index.max() count = len(group_index) alpha = 0.0 # taking complexities literally; there may be beta = 1.0 # some room for fine-tuning these parameters do_groupsort = count > 0 and ((alpha + beta * ngroups) < (count * np.log(count))) if do_groupsort: sorter, _ = algos.groupsort_indexer( ensure_platform_int(group_index), ngroups, ) # sorter _should_ already be intp, but mypy is not yet able to verify else: sorter = group_index.argsort(kind="mergesort") return ensure_platform_int(sorter) def compress_group_index( group_index: npt.NDArray[np.int64], sort: bool = True ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). """ size_hint = len(group_index) table = hashtable.Int64HashTable(size_hint) group_index = ensure_int64(group_index) # note, group labels come out ascending (ie, 1,2,3 etc) comp_ids, obs_group_ids = table.get_labels_groupby(group_index) if sort and len(obs_group_ids) > 0: obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids) return ensure_int64(comp_ids), ensure_int64(obs_group_ids) def _reorder_by_uniques( uniques: npt.NDArray[np.int64], labels: npt.NDArray[np.intp] ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.intp]]: """ Parameters ---------- uniques : np.ndarray[np.int64] labels : np.ndarray[np.intp] Returns ------- np.ndarray[np.int64] np.ndarray[np.intp] """ # sorter is index where elements ought to go sorter = uniques.argsort() # reverse_indexer is where elements came from reverse_indexer = np.empty(len(sorter), dtype=np.intp) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 # move labels to right locations (ie, unsort ascending labels) labels = reverse_indexer.take(labels) np.putmask(labels, mask, -1) # sort observed ids uniques = uniques.take(sorter) return uniques, labels