from collections import abc import numpy as np import pytest from pandas import ( CategoricalDtype, DataFrame, MultiIndex, Series, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameToRecords: def test_to_records_timeseries(self): index = date_range("1/1/2000", periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"]) result = df.to_records() assert result["index"].dtype == "M8[ns]" result = df.to_records(index=False) def test_to_records_dt64(self): df = DataFrame( [["one", "two", "three"], ["four", "five", "six"]], index=date_range("2012-01-01", "2012-01-02"), ) expected = df.index.values[0] result = df.to_records()["index"][0] assert expected == result def test_to_records_dt64tz_column(self): # GH#32535 dont less tz in to_records df = DataFrame({"A": date_range("2012-01-01", "2012-01-02", tz="US/Eastern")}) result = df.to_records() assert result.dtype["A"] == object val = result[0][1] assert isinstance(val, Timestamp) assert val == df.loc[0, "A"] def test_to_records_with_multindex(self): # GH#3189 index = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] data = np.zeros((8, 4)) df = DataFrame(data, index=index) r = df.to_records(index=True)["level_0"] assert "bar" in r assert "one" not in r def test_to_records_with_Mapping_type(self): import email from email.parser import Parser abc.Mapping.register(email.message.Message) headers = Parser().parsestr( "From: \n" "To: \n" "Subject: Test message\n" "\n" "Body would go here\n" ) frame = DataFrame.from_records([headers]) all(x in frame for x in ["Type", "Subject", "From"]) def test_to_records_floats(self): df = DataFrame(np.random.rand(10, 10)) df.to_records() def test_to_records_index_name(self): df = DataFrame(np.random.randn(3, 3)) df.index.name = "X" rs = df.to_records() assert "X" in rs.dtype.fields df = DataFrame(np.random.randn(3, 3)) rs = df.to_records() assert "index" in rs.dtype.fields df.index = MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) df.index.names = ["A", None] result = df.to_records() expected = np.rec.fromarrays( [np.array(["a", "a", "b"]), np.array(["x", "y", "z"])] + [np.asarray(df.iloc[:, i]) for i in range(3)], dtype={ "names": ["A", "level_1", "0", "1", "2"], "formats": [" default to array dtypes. ( {}, np.rec.array( [(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")], dtype=[("index", " bool: return key in self.d def keys(self): return self.d.keys() df = DataFrame({"A": [1, 2], "B": [0.2, 1.5], "C": ["a", "bc"]}) dtype_mappings = { "column_dtypes": DictLike(**{"A": np.int8, "B": np.float32}), "index_dtypes": "