"""Functions for converting between color spaces. The "central" color space in this module is RGB, more specifically the linear sRGB color space using D65 as a white-point [1]_. This represents a standard monitor (w/o gamma correction). For a good FAQ on color spaces see [2]_. The API consists of functions to convert to and from RGB as defined above, as well as a generic function to convert to and from any supported color space (which is done through RGB in most cases). Supported color spaces ---------------------- * RGB : Red Green Blue. Here the sRGB standard [1]_. * HSV : Hue, Saturation, Value. Uniquely defined when related to sRGB [3]_. * RGB CIE : Red Green Blue. The original RGB CIE standard from 1931 [4]_. Primary colors are 700 nm (red), 546.1 nm (blue) and 435.8 nm (green). * XYZ CIE : XYZ Derived from the RGB CIE color space. Chosen such that ``x == y == z == 1/3`` at the whitepoint, and all color matching functions are greater than zero everywhere. * LAB CIE : Lightness, a, b Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LUV CIE : Lightness, u, v Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LCH CIE : Lightness, Chroma, Hue Defined in terms of LAB CIE. C and H are the polar representation of a and b. The polar angle C is defined to be on ``(0, 2*pi)`` :author: Nicolas Pinto (rgb2hsv) :author: Ralf Gommers (hsv2rgb) :author: Travis Oliphant (XYZ and RGB CIE functions) :author: Matt Terry (lab2lch) :author: Alex Izvorski (yuv2rgb, rgb2yuv and related) :license: modified BSD References ---------- .. [1] Official specification of sRGB, IEC 61966-2-1:1999. .. [2] http://www.poynton.com/ColorFAQ.html .. [3] https://en.wikipedia.org/wiki/HSL_and_HSV .. [4] https://en.wikipedia.org/wiki/CIE_1931_color_space """ from warnings import warn import numpy as np from scipy import linalg from .._shared.utils import (_supported_float_type, channel_as_last_axis, identity, reshape_nd, slice_at_axis) from ..util import dtype, dtype_limits def convert_colorspace(arr, fromspace, tospace, *, channel_axis=-1): """Convert an image array to a new color space. Valid color spaces are: 'RGB', 'HSV', 'RGB CIE', 'XYZ', 'YUV', 'YIQ', 'YPbPr', 'YCbCr', 'YDbDr' Parameters ---------- arr : (..., 3, ...) array_like The image to convert. By default, the final dimension denotes channels. fromspace : str The color space to convert from. Can be specified in lower case. tospace : str The color space to convert to. Can be specified in lower case. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The converted image. Same dimensions as input. Raises ------ ValueError If fromspace is not a valid color space ValueError If tospace is not a valid color space Notes ----- Conversion is performed through the "central" RGB color space, i.e. conversion from XYZ to HSV is implemented as ``XYZ -> RGB -> HSV`` instead of directly. Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = convert_colorspace(img, 'RGB', 'HSV') """ fromdict = {'rgb': identity, 'hsv': hsv2rgb, 'rgb cie': rgbcie2rgb, 'xyz': xyz2rgb, 'yuv': yuv2rgb, 'yiq': yiq2rgb, 'ypbpr': ypbpr2rgb, 'ycbcr': ycbcr2rgb, 'ydbdr': ydbdr2rgb} todict = {'rgb': identity, 'hsv': rgb2hsv, 'rgb cie': rgb2rgbcie, 'xyz': rgb2xyz, 'yuv': rgb2yuv, 'yiq': rgb2yiq, 'ypbpr': rgb2ypbpr, 'ycbcr': rgb2ycbcr, 'ydbdr': rgb2ydbdr} fromspace = fromspace.lower() tospace = tospace.lower() if fromspace not in fromdict: msg = f'`fromspace` has to be one of {fromdict.keys()}' raise ValueError(msg) if tospace not in todict: msg = f'`tospace` has to be one of {todict.keys()}' raise ValueError(msg) return todict[tospace]( fromdict[fromspace](arr, channel_axis=channel_axis), channel_axis=channel_axis ) def _prepare_colorarray(arr, force_copy=False, *, channel_axis=-1): """Check the shape of the array and convert it to floating point representation. """ arr = np.asanyarray(arr) if arr.shape[channel_axis] != 3: msg = (f'the input array must have size 3 along `channel_axis`, ' f'got {arr.shape}') raise ValueError(msg) float_dtype = _supported_float_type(arr.dtype) if float_dtype == np.float32: _func = dtype.img_as_float32 else: _func = dtype.img_as_float64 return _func(arr, force_copy=force_copy) def _validate_channel_axis(channel_axis, ndim): if not isinstance(channel_axis, int): raise TypeError("channel_axis must be an integer") if channel_axis < -ndim or channel_axis >= ndim: raise np.AxisError("channel_axis exceeds array dimensions") def rgba2rgb(rgba, background=(1, 1, 1), *, channel_axis=-1): """RGBA to RGB conversion using alpha blending [1]_. Parameters ---------- rgba : (..., 4, ...) array_like The image in RGBA format. By default, the final dimension denotes channels. background : array_like The color of the background to blend the image with (3 floats between 0 to 1 - the RGB value of the background). channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `rgba` is not at least 2D with shape (..., 4, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending Examples -------- >>> from skimage import color >>> from skimage import data >>> img_rgba = data.logo() >>> img_rgb = color.rgba2rgb(img_rgba) """ arr = np.asanyarray(rgba) _validate_channel_axis(channel_axis, arr.ndim) channel_axis = channel_axis % arr.ndim if arr.shape[channel_axis] != 4: msg = (f'the input array must have size 4 along `channel_axis`, ' f'got {arr.shape}') raise ValueError(msg) float_dtype = _supported_float_type(arr.dtype) if float_dtype == np.float32: arr = dtype.img_as_float32(arr) else: arr = dtype.img_as_float64(arr) background = np.ravel(background).astype(arr.dtype) if len(background) != 3: raise ValueError('background must be an array-like containing 3 RGB ' f'values. Got {len(background)} items') if np.any(background < 0) or np.any(background > 1): raise ValueError('background RGB values must be floats between ' '0 and 1.') # reshape background for broadcasting along non-channel axes background = reshape_nd(background, arr.ndim, channel_axis) alpha = arr[slice_at_axis(slice(3, 4), axis=channel_axis)] channels = arr[slice_at_axis(slice(3), axis=channel_axis)] out = np.clip((1 - alpha) * background + alpha * channels, a_min=0, a_max=1) return out @channel_as_last_axis() def rgb2hsv(rgb, *, channel_axis=-1): """RGB to HSV color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in HSV format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> from skimage import color >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = color.rgb2hsv(img) """ input_is_one_pixel = rgb.ndim == 1 if input_is_one_pixel: rgb = rgb[np.newaxis, ...] arr = _prepare_colorarray(rgb, channel_axis=-1) out = np.empty_like(arr) # -- V channel out_v = arr.max(-1) # -- S channel delta = arr.ptp(-1) # Ignore warning for zero divided by zero old_settings = np.seterr(invalid='ignore') out_s = delta / out_v out_s[delta == 0.] = 0. # -- H channel # red is max idx = (arr[..., 0] == out_v) out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] # green is max idx = (arr[..., 1] == out_v) out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx] # blue is max idx = (arr[..., 2] == out_v) out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx] out_h = (out[..., 0] / 6.) % 1. out_h[delta == 0.] = 0. np.seterr(**old_settings) # -- output out[..., 0] = out_h out[..., 1] = out_s out[..., 2] = out_v # # remove NaN out[np.isnan(out)] = 0 if input_is_one_pixel: out = np.squeeze(out, axis=0) return out @channel_as_last_axis() def hsv2rgb(hsv, *, channel_axis=-1): """HSV to RGB color space conversion. Parameters ---------- hsv : (..., 3, ...) array_like The image in HSV format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `hsv` is not at least 2-D with shape (..., 3, ...). Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_hsv = rgb2hsv(img) >>> img_rgb = hsv2rgb(img_hsv) """ arr = _prepare_colorarray(hsv, channel_axis=-1) hi = np.floor(arr[..., 0] * 6) f = arr[..., 0] * 6 - hi p = arr[..., 2] * (1 - arr[..., 1]) q = arr[..., 2] * (1 - f * arr[..., 1]) t = arr[..., 2] * (1 - (1 - f) * arr[..., 1]) v = arr[..., 2] hi = np.stack([hi, hi, hi], axis=-1).astype(np.uint8) % 6 out = np.choose( hi, np.stack([np.stack((v, t, p), axis=-1), np.stack((q, v, p), axis=-1), np.stack((p, v, t), axis=-1), np.stack((p, q, v), axis=-1), np.stack((t, p, v), axis=-1), np.stack((v, p, q), axis=-1)])) return out # --------------------------------------------------------------- # Primaries for the coordinate systems # --------------------------------------------------------------- cie_primaries = np.array([700, 546.1, 435.8]) sb_primaries = np.array([1. / 155, 1. / 190, 1. / 225]) * 1e5 # --------------------------------------------------------------- # Matrices that define conversion between different color spaces # --------------------------------------------------------------- # From sRGB specification xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) rgb_from_xyz = linalg.inv(xyz_from_rgb) # From https://en.wikipedia.org/wiki/CIE_1931_color_space # Note: Travis's code did not have the divide by 0.17697 xyz_from_rgbcie = np.array([[0.49, 0.31, 0.20], [0.17697, 0.81240, 0.01063], [0.00, 0.01, 0.99]]) / 0.17697 rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie) # construct matrices to and from rgb: rgbcie_from_rgb = rgbcie_from_xyz @ xyz_from_rgb rgb_from_rgbcie = rgb_from_xyz @ xyz_from_rgbcie gray_from_rgb = np.array([[0.2125, 0.7154, 0.0721], [0, 0, 0], [0, 0, 0]]) yuv_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.14714119, -0.28886916, 0.43601035 ], [ 0.61497538, -0.51496512, -0.10001026 ]]) rgb_from_yuv = linalg.inv(yuv_from_rgb) yiq_from_rgb = np.array([[0.299 , 0.587 , 0.114 ], [0.59590059, -0.27455667, -0.32134392], [0.21153661, -0.52273617, 0.31119955]]) rgb_from_yiq = linalg.inv(yiq_from_rgb) ypbpr_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.168736,-0.331264, 0.5 ], [ 0.5 ,-0.418688,-0.081312]]) rgb_from_ypbpr = linalg.inv(ypbpr_from_rgb) ycbcr_from_rgb = np.array([[ 65.481, 128.553, 24.966], [ -37.797, -74.203, 112.0 ], [ 112.0 , -93.786, -18.214]]) rgb_from_ycbcr = linalg.inv(ycbcr_from_rgb) ydbdr_from_rgb = np.array([[ 0.299, 0.587, 0.114], [ -0.45 , -0.883, 1.333], [ -1.333, 1.116, 0.217]]) rgb_from_ydbdr = linalg.inv(ydbdr_from_rgb) # CIE LAB constants for Observer=2A, Illuminant=D65 # NOTE: this is actually the XYZ values for the illuminant above. lab_ref_white = np.array([0.95047, 1., 1.08883]) # XYZ coordinates of the illuminants, scaled to [0, 1]. For each illuminant I # we have: # # illuminant[I]['2'] corresponds to the XYZ coordinates for the 2 degree # field of view. # # illuminant[I]['10'] corresponds to the XYZ coordinates for the 10 degree # field of view. # # illuminant[I]['R'] corresponds to the XYZ coordinates for R illuminants # in grDevices::convertColor # # The XYZ coordinates are calculated from [1], using the formula: # # X = x * ( Y / y ) # Y = Y # Z = ( 1 - x - y ) * ( Y / y ) # # where Y = 1. The only exception is the illuminant "D65" with aperture angle # 2, whose coordinates are copied from 'lab_ref_white' for # backward-compatibility reasons. # # References # ---------- # .. [1] https://en.wikipedia.org/wiki/Standard_illuminant illuminants = \ {"A": {'2': (1.098466069456375, 1, 0.3558228003436005), '10': (1.111420406956693, 1, 0.3519978321919493), 'R': (1.098466069456375, 1, 0.3558228003436005)}, "B": {'2': (0.9909274480248003, 1, 0.8531327322886154), '10': (0.9917777147717607, 1, 0.8434930535866175), 'R': (0.9909274480248003, 1, 0.8531327322886154)}, "C": {'2': (0.980705971659919, 1, 1.1822494939271255), '10': (0.9728569189782166, 1, 1.1614480488951577), 'R': (0.980705971659919, 1, 1.1822494939271255)}, "D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), '10': (0.9672062750333777, 1, 0.8142801513128616), 'R': (0.9639501491621826, 1, 0.8241280285499208)}, "D55": {'2': (0.956797052643698, 1, 0.9214805860173273), '10': (0.9579665682254781, 1, 0.9092525159847462), 'R': (0.9565317453467969, 1, 0.9202554587037198)}, "D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` '10': (0.94809667673716, 1, 1.0730513595166162), 'R': (0.9532057125493769, 1, 1.0853843816469158)}, "D75": {'2': (0.9497220898840717, 1, 1.226393520724154), '10': (0.9441713925645873, 1, 1.2064272211720228), 'R': (0.9497220898840717, 1, 1.226393520724154)}, "E": {'2': (1.0, 1.0, 1.0), '10': (1.0, 1.0, 1.0), 'R': (1.0, 1.0, 1.0)}} def get_xyz_coords(illuminant, observer, dtype=float): """Get the XYZ coordinates of the given illuminant and observer [1]_. Parameters ---------- illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional One of: 2-degree observer, 10-degree observer, or 'R' observer as in R function grDevices::convertColor. dtype: dtype, optional Output data type. Returns ------- out : array Array with 3 elements containing the XYZ coordinates of the given illuminant. Raises ------ ValueError If either the illuminant or the observer angle are not supported or unknown. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ illuminant = illuminant.upper() observer = observer.upper() try: return np.asarray(illuminants[illuminant][observer], dtype=dtype) except KeyError: raise ValueError(f'Unknown illuminant/observer combination ' f'(`{illuminant}`, `{observer}`)') # Haematoxylin-Eosin-DAB colorspace # From original Ruifrok's paper: A. C. Ruifrok and D. A. Johnston, # "Quantification of histochemical staining by color deconvolution," # Analytical and quantitative cytology and histology / the International # Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, # pp. 291-9, Aug. 2001. rgb_from_hed = np.array([[0.65, 0.70, 0.29], [0.07, 0.99, 0.11], [0.27, 0.57, 0.78]]) hed_from_rgb = linalg.inv(rgb_from_hed) # Following matrices are adapted form the Java code written by G.Landini. # The original code is available at: # https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html # Hematoxylin + DAB rgb_from_hdx = np.array([[0.650, 0.704, 0.286], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_hdx[2, :] = np.cross(rgb_from_hdx[0, :], rgb_from_hdx[1, :]) hdx_from_rgb = linalg.inv(rgb_from_hdx) # Feulgen + Light Green rgb_from_fgx = np.array([[0.46420921, 0.83008335, 0.30827187], [0.94705542, 0.25373821, 0.19650764], [0.0, 0.0, 0.0]]) rgb_from_fgx[2, :] = np.cross(rgb_from_fgx[0, :], rgb_from_fgx[1, :]) fgx_from_rgb = linalg.inv(rgb_from_fgx) # Giemsa: Methyl Blue + Eosin rgb_from_bex = np.array([[0.834750233, 0.513556283, 0.196330403], [0.092789, 0.954111, 0.283111], [0.0, 0.0, 0.0]]) rgb_from_bex[2, :] = np.cross(rgb_from_bex[0, :], rgb_from_bex[1, :]) bex_from_rgb = linalg.inv(rgb_from_bex) # FastRed + FastBlue + DAB rgb_from_rbd = np.array([[0.21393921, 0.85112669, 0.47794022], [0.74890292, 0.60624161, 0.26731082], [0.268, 0.570, 0.776]]) rbd_from_rgb = linalg.inv(rgb_from_rbd) # Methyl Green + DAB rgb_from_gdx = np.array([[0.98003, 0.144316, 0.133146], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_gdx[2, :] = np.cross(rgb_from_gdx[0, :], rgb_from_gdx[1, :]) gdx_from_rgb = linalg.inv(rgb_from_gdx) # Hematoxylin + AEC rgb_from_hax = np.array([[0.650, 0.704, 0.286], [0.2743, 0.6796, 0.6803], [0.0, 0.0, 0.0]]) rgb_from_hax[2, :] = np.cross(rgb_from_hax[0, :], rgb_from_hax[1, :]) hax_from_rgb = linalg.inv(rgb_from_hax) # Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G rgb_from_bro = np.array([[0.853033, 0.508733, 0.112656], [0.09289875, 0.8662008, 0.49098468], [0.10732849, 0.36765403, 0.9237484]]) bro_from_rgb = linalg.inv(rgb_from_bro) # Methyl Blue + Ponceau Fuchsin rgb_from_bpx = np.array([[0.7995107, 0.5913521, 0.10528667], [0.09997159, 0.73738605, 0.6680326], [0.0, 0.0, 0.0]]) rgb_from_bpx[2, :] = np.cross(rgb_from_bpx[0, :], rgb_from_bpx[1, :]) bpx_from_rgb = linalg.inv(rgb_from_bpx) # Alcian Blue + Hematoxylin rgb_from_ahx = np.array([[0.874622, 0.457711, 0.158256], [0.552556, 0.7544, 0.353744], [0.0, 0.0, 0.0]]) rgb_from_ahx[2, :] = np.cross(rgb_from_ahx[0, :], rgb_from_ahx[1, :]) ahx_from_rgb = linalg.inv(rgb_from_ahx) # Hematoxylin + PAS rgb_from_hpx = np.array([[0.644211, 0.716556, 0.266844], [0.175411, 0.972178, 0.154589], [0.0, 0.0, 0.0]]) rgb_from_hpx[2, :] = np.cross(rgb_from_hpx[0, :], rgb_from_hpx[1, :]) hpx_from_rgb = linalg.inv(rgb_from_hpx) # ------------------------------------------------------------- # The conversion functions that make use of the matrices above # ------------------------------------------------------------- def _convert(matrix, arr): """Do the color space conversion. Parameters ---------- matrix : array_like The 3x3 matrix to use. arr : (..., 3, ...) array_like The input array. By default, the final dimension denotes channels. Returns ------- out : (..., 3, ...) ndarray The converted array. Same dimensions as input. """ arr = _prepare_colorarray(arr) return arr @ matrix.T.astype(arr.dtype) @channel_as_last_axis() def xyz2rgb(xyz, *, channel_axis=-1): """XYZ to RGB color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts to sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2rgb >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_rgb = xyz2rgb(img_xyz) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _convert(rgb_from_xyz, xyz) mask = arr > 0.0031308 arr[mask] = 1.055 * np.power(arr[mask], 1 / 2.4) - 0.055 arr[~mask] *= 12.92 np.clip(arr, 0, 1, out=arr) return arr @channel_as_last_axis() def rgb2xyz(rgb, *, channel_axis=-1): """RGB to XYZ color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts from sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _prepare_colorarray(rgb, channel_axis=-1).copy() mask = arr > 0.04045 arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4) arr[~mask] /= 12.92 return arr @ xyz_from_rgb.T.astype(arr.dtype) @channel_as_last_axis() def rgb2rgbcie(rgb, *, channel_axis=-1): """RGB to RGB CIE color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB CIE format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2rgbcie >>> img = data.astronaut() >>> img_rgbcie = rgb2rgbcie(img) """ return _convert(rgbcie_from_rgb, rgb) @channel_as_last_axis() def rgbcie2rgb(rgbcie, *, channel_axis=-1): """RGB CIE to RGB color space conversion. Parameters ---------- rgbcie : (..., 3, ...) array_like The image in RGB CIE format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `rgbcie` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2rgbcie, rgbcie2rgb >>> img = data.astronaut() >>> img_rgbcie = rgb2rgbcie(img) >>> img_rgb = rgbcie2rgb(img_rgbcie) """ return _convert(rgb_from_rgbcie, rgbcie) @channel_as_last_axis(multichannel_output=False) def rgb2gray(rgb, *, channel_axis=-1): """Compute luminance of an RGB image. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. Returns ------- out : ndarray The luminance image - an array which is the same size as the input array, but with the channel dimension removed. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- The weights used in this conversion are calibrated for contemporary CRT phosphors:: Y = 0.2125 R + 0.7154 G + 0.0721 B If there is an alpha channel present, it is ignored. References ---------- .. [1] http://poynton.ca/PDFs/ColorFAQ.pdf Examples -------- >>> from skimage.color import rgb2gray >>> from skimage import data >>> img = data.astronaut() >>> img_gray = rgb2gray(img) """ rgb = _prepare_colorarray(rgb) coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=rgb.dtype) return rgb @ coeffs def gray2rgba(image, alpha=None, *, channel_axis=-1): """Create a RGBA representation of a gray-level image. Parameters ---------- image : array_like Input image. alpha : array_like, optional Alpha channel of the output image. It may be a scalar or an array that can be broadcast to ``image``. If not specified it is set to the maximum limit corresponding to the ``image`` dtype. channel_axis : int, optional This parameter indicates which axis of the output array will correspond to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- rgba : ndarray RGBA image. A new dimension of length 4 is added to input image shape. """ arr = np.asarray(image) alpha_min, alpha_max = dtype_limits(arr, clip_negative=False) if alpha is None: alpha = alpha_max if not np.can_cast(alpha, arr.dtype): warn(f'alpha cannot be safely cast to image dtype {arr.dtype.name}', stacklevel=2) if np.isscalar(alpha): alpha = np.full(arr.shape, alpha, dtype=arr.dtype) elif alpha.shape != arr.shape: raise ValueError("alpha.shape must match image.shape") rgba = np.stack((arr,) * 3 + (alpha,), axis=channel_axis) return rgba def gray2rgb(image, *, channel_axis=-1): """Create an RGB representation of a gray-level image. Parameters ---------- image : array_like Input image. channel_axis : int, optional This parameter indicates which axis of the output array will correspond to channels. Returns ------- rgb : (..., 3, ...) ndarray RGB image. A new dimension of length 3 is added to input image. Notes ----- If the input is a 1-dimensional image of shape ``(M, )``, the output will be shape ``(M, 3)``. """ return np.stack(3 * (image,), axis=channel_axis) @channel_as_last_axis() def xyz2lab(xyz, illuminant="D65", observer="2", *, channel_axis=-1): """XYZ to CIE-LAB color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional One of: 2-degree observer, 10-degree observer, or 'R' observer as in R function grDevices::convertColor. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in CIE-LAB format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle is unsupported or unknown. Notes ----- By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07 .. [2] https://en.wikipedia.org/wiki/Lab_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2lab >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_lab = xyz2lab(img_xyz) """ arr = _prepare_colorarray(xyz, channel_axis=-1) xyz_ref_white = get_xyz_coords(illuminant, observer, arr.dtype) # scale by CIE XYZ tristimulus values of the reference white point arr = arr / xyz_ref_white # Nonlinear distortion and linear transformation mask = arr > 0.008856 arr[mask] = np.cbrt(arr[mask]) arr[~mask] = 7.787 * arr[~mask] + 16. / 116. x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] # Vector scaling L = (116. * y) - 16. a = 500.0 * (x - y) b = 200.0 * (y - z) return np.concatenate([x[..., np.newaxis] for x in [L, a, b]], axis=-1) @channel_as_last_axis() def lab2xyz(lab, illuminant="D65", observer="2", *, channel_axis=-1): """CIE-LAB to XYZcolor space conversion. Parameters ---------- lab : (..., 3, ...) array_like The image in Lab format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `lab` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. UserWarning If any of the pixels are invalid (Z < 0). Notes ----- By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref = 95.047, y_ref = 100., z_ref = 108.883. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07 .. [2] https://en.wikipedia.org/wiki/Lab_color_space """ arr = _prepare_colorarray(lab, channel_axis=-1).copy() L, a, b = arr[..., 0], arr[..., 1], arr[..., 2] y = (L + 16.) / 116. x = (a / 500.) + y z = y - (b / 200.) if np.any(z < 0): invalid = np.nonzero(z < 0) warn('Color data out of range: Z < 0 in %s pixels' % invalid[0].size, stacklevel=2) z[invalid] = 0 out = np.stack([x, y, z], axis=-1) mask = out > 0.2068966 out[mask] = np.power(out[mask], 3.) out[~mask] = (out[~mask] - 16.0 / 116.) / 7.787 # rescale to the reference white (illuminant) xyz_ref_white = get_xyz_coords(illuminant, observer) out *= xyz_ref_white return out @channel_as_last_axis() def rgb2lab(rgb, illuminant="D65", observer="2", *, channel_axis=-1): """Conversion from the sRGB color space (IEC 61966-2-1:1999) to the CIE Lab colorspace under the given illuminant and observer. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in Lab format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- RGB is a device-dependent color space so, if you use this function, be sure that the image you are analyzing has been mapped to the sRGB color space. This function uses rgb2xyz and xyz2lab. By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ return xyz2lab(rgb2xyz(rgb), illuminant, observer) @channel_as_last_axis() def lab2rgb(lab, illuminant="D65", observer="2", *, channel_axis=-1): """Lab to RGB color space conversion. Parameters ---------- lab : (..., 3, ...) array_like The image in Lab format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `lab` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses lab2xyz and xyz2rgb. By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ return xyz2rgb(lab2xyz(lab, illuminant, observer)) @channel_as_last_axis() def xyz2luv(xyz, illuminant="D65", observer="2", *, channel_axis=-1): """XYZ to CIE-Luv color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in CIE-Luv format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- By default XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] https://en.wikipedia.org/wiki/CIELUV Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2luv >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_luv = xyz2luv(img_xyz) """ input_is_one_pixel = xyz.ndim == 1 if input_is_one_pixel: xyz = xyz[np.newaxis, ...] arr = _prepare_colorarray(xyz, channel_axis=-1) # extract channels x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] eps = np.finfo(float).eps # compute y_r and L xyz_ref_white = np.array(get_xyz_coords(illuminant, observer)) L = y / xyz_ref_white[1] mask = L > 0.008856 L[mask] = 116. * np.cbrt(L[mask]) - 16. L[~mask] = 903.3 * L[~mask] u0 = 4 * xyz_ref_white[0] / ([1, 15, 3] @ xyz_ref_white) v0 = 9 * xyz_ref_white[1] / ([1, 15, 3] @ xyz_ref_white) # u' and v' helper functions def fu(X, Y, Z): return (4. * X) / (X + 15. * Y + 3. * Z + eps) def fv(X, Y, Z): return (9. * Y) / (X + 15. * Y + 3. * Z + eps) # compute u and v using helper functions u = 13. * L * (fu(x, y, z) - u0) v = 13. * L * (fv(x, y, z) - v0) out = np.stack([L, u, v], axis=-1) if input_is_one_pixel: out = np.squeeze(out, axis=0) return out @channel_as_last_axis() def luv2xyz(luv, illuminant="D65", observer="2", *, channel_axis=-1): """CIE-Luv to XYZ color space conversion. Parameters ---------- luv : (..., 3, ...) array_like The image in CIE-Luv format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `luv` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] https://en.wikipedia.org/wiki/CIELUV """ arr = _prepare_colorarray(luv, channel_axis=-1).copy() L, u, v = arr[..., 0], arr[..., 1], arr[..., 2] eps = np.finfo(float).eps # compute y y = L.copy() mask = y > 7.999625 y[mask] = np.power((y[mask] + 16.) / 116., 3.) y[~mask] = y[~mask] / 903.3 xyz_ref_white = get_xyz_coords(illuminant, observer) y *= xyz_ref_white[1] # reference white x,z uv_weights = np.array([1, 15, 3]) u0 = 4 * xyz_ref_white[0] / (uv_weights @ xyz_ref_white) v0 = 9 * xyz_ref_white[1] / (uv_weights @ xyz_ref_white) # compute intermediate values a = u0 + u / (13. * L + eps) b = v0 + v / (13. * L + eps) c = 3 * y * (5 * b - 3) # compute x and z z = ((a - 4) * c - 15 * a * b * y) / (12 * b) x = -(c / b + 3. * z) return np.concatenate([q[..., np.newaxis] for q in [x, y, z]], axis=-1) @channel_as_last_axis() def rgb2luv(rgb, *, channel_axis=-1): """RGB to CIE-Luv color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in CIE Luv format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses rgb2xyz and xyz2luv. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] http://www.easyrgb.com/index.php?X=MATH&H=02#text2 .. [3] https://en.wikipedia.org/wiki/CIELUV """ return xyz2luv(rgb2xyz(rgb)) @channel_as_last_axis() def luv2rgb(luv, *, channel_axis=-1): """Luv to RGB color space conversion. Parameters ---------- luv : (..., 3, ...) array_like The image in CIE Luv format. By default, the final dimension denotes channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `luv` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses luv2xyz and xyz2rgb. """ return xyz2rgb(luv2xyz(luv)) @channel_as_last_axis() def rgb2hed(rgb, *, channel_axis=-1): """RGB to Haematoxylin-Eosin-DAB (HED) color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in HED format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import rgb2hed >>> ihc = data.immunohistochemistry() >>> ihc_hed = rgb2hed(ihc) """ return separate_stains(rgb, hed_from_rgb) @channel_as_last_axis() def hed2rgb(hed, *, channel_axis=-1): """Haematoxylin-Eosin-DAB (HED) to RGB color space conversion. Parameters ---------- hed : (..., 3, ...) array_like The image in the HED color space. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB. Same dimensions as input. Raises ------ ValueError If `hed` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import rgb2hed, hed2rgb >>> ihc = data.immunohistochemistry() >>> ihc_hed = rgb2hed(ihc) >>> ihc_rgb = hed2rgb(ihc_hed) """ return combine_stains(hed, rgb_from_hed) @channel_as_last_axis() def separate_stains(rgb, conv_matrix, *, channel_axis=-1): """RGB to stain color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in stain color space. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Stain separation matrices available in the ``color`` module and their respective colorspace: * ``hed_from_rgb``: Hematoxylin + Eosin + DAB * ``hdx_from_rgb``: Hematoxylin + DAB * ``fgx_from_rgb``: Feulgen + Light Green * ``bex_from_rgb``: Giemsa stain : Methyl Blue + Eosin * ``rbd_from_rgb``: FastRed + FastBlue + DAB * ``gdx_from_rgb``: Methyl Green + DAB * ``hax_from_rgb``: Hematoxylin + AEC * ``bro_from_rgb``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``bpx_from_rgb``: Methyl Blue + Ponceau Fuchsin * ``ahx_from_rgb``: Alcian Blue + Hematoxylin * ``hpx_from_rgb``: Hematoxylin + PAS This implementation borrows some ideas from DIPlib [2]_, e.g. the compensation using a small value to avoid log artifacts when calculating the Beer-Lambert law. References ---------- .. [1] https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html .. [2] https://github.com/DIPlib/diplib/ .. [3] A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import separate_stains, hdx_from_rgb >>> ihc = data.immunohistochemistry() >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) """ rgb = _prepare_colorarray(rgb, force_copy=True, channel_axis=-1) np.maximum(rgb, 1E-6, out=rgb) # avoiding log artifacts log_adjust = np.log(1E-6) # used to compensate the sum above stains = (np.log(rgb) / log_adjust) @ conv_matrix np.maximum(stains, 0, out=stains) return stains @channel_as_last_axis() def combine_stains(stains, conv_matrix, *, channel_axis=-1): """Stain to RGB color space conversion. Parameters ---------- stains : (..., 3, ...) array_like The image in stain color space. By default, the final dimension denotes channels. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `stains` is not at least 2-D with shape (..., 3, ...). Notes ----- Stain combination matrices available in the ``color`` module and their respective colorspace: * ``rgb_from_hed``: Hematoxylin + Eosin + DAB * ``rgb_from_hdx``: Hematoxylin + DAB * ``rgb_from_fgx``: Feulgen + Light Green * ``rgb_from_bex``: Giemsa stain : Methyl Blue + Eosin * ``rgb_from_rbd``: FastRed + FastBlue + DAB * ``rgb_from_gdx``: Methyl Green + DAB * ``rgb_from_hax``: Hematoxylin + AEC * ``rgb_from_bro``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``rgb_from_bpx``: Methyl Blue + Ponceau Fuchsin * ``rgb_from_ahx``: Alcian Blue + Hematoxylin * ``rgb_from_hpx``: Hematoxylin + PAS References ---------- .. [1] https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html .. [2] A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001. Examples -------- >>> from skimage import data >>> from skimage.color import (separate_stains, combine_stains, ... hdx_from_rgb, rgb_from_hdx) >>> ihc = data.immunohistochemistry() >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) >>> ihc_rgb = combine_stains(ihc_hdx, rgb_from_hdx) """ stains = _prepare_colorarray(stains, channel_axis=-1) # log_adjust here is used to compensate the sum within separate_stains(). log_adjust = -np.log(1E-6) log_rgb = -(stains * log_adjust) @ conv_matrix rgb = np.exp(log_rgb) return np.clip(rgb, a_min=0, a_max=1) @channel_as_last_axis() def lab2lch(lab, *, channel_axis=-1): """CIE-LAB to CIE-LCH color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lab : (..., 3, ...) array_like The N-D image in CIE-LAB format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in LCH format, in a N-D array with same shape as input `lab`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, a, b). Notes ----- The Hue is expressed as an angle between ``(0, 2*pi)`` Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lab2lch >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) """ lch = _prepare_lab_array(lab) a, b = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = _cart2polar_2pi(a, b) return lch def _cart2polar_2pi(x, y): """convert cartesian coordinates to polar (uses non-standard theta range!) NON-STANDARD RANGE! Maps to ``(0, 2*pi)`` rather than usual ``(-pi, +pi)`` """ r, t = np.hypot(x, y), np.arctan2(y, x) t += np.where(t < 0., 2 * np.pi, 0) return r, t @channel_as_last_axis() def lch2lab(lch, *, channel_axis=-1): """CIE-LCH to CIE-LAB color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lch : (..., 3, ...) array_like The N-D image in CIE-LCH format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in LAB format, with same shape as input `lch`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, c, h). Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lch2lab, lab2lch >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) >>> img_lab2 = lch2lab(img_lch) """ lch = _prepare_lab_array(lch) c, h = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = c * np.cos(h), c * np.sin(h) return lch def _prepare_lab_array(arr, force_copy=True): """Ensure input for lab2lch, lch2lab are well-posed. Arrays must be in floating point and have at least 3 elements in last dimension. Return a new array. """ arr = np.asarray(arr) shape = arr.shape if shape[-1] < 3: raise ValueError('Input array has less than 3 color channels') float_dtype = _supported_float_type(arr.dtype) if float_dtype == np.float32: _func = dtype.img_as_float32 else: _func = dtype.img_as_float64 return _func(arr, force_copy=force_copy) @channel_as_last_axis() def rgb2yuv(rgb, *, channel_axis=-1): """RGB to YUV color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in YUV format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 0 and 1. Use YCbCr instead of YUV for the color space commonly used by video codecs, where Y ranges from 16 to 235. References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(yuv_from_rgb, rgb) @channel_as_last_axis() def rgb2yiq(rgb, *, channel_axis=-1): """RGB to YIQ color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in YIQ format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). """ return _convert(yiq_from_rgb, rgb) @channel_as_last_axis() def rgb2ypbpr(rgb, *, channel_axis=-1): """RGB to YPbPr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in YPbPr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(ypbpr_from_rgb, rgb) @channel_as_last_axis() def rgb2ycbcr(rgb, *, channel_axis=-1): """RGB to YCbCr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in YCbCr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called "YUV". References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ arr = _convert(ycbcr_from_rgb, rgb) arr[..., 0] += 16 arr[..., 1] += 128 arr[..., 2] += 128 return arr @channel_as_last_axis() def rgb2ydbdr(rgb, *, channel_axis=-1): """RGB to YDbDr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in YDbDr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- This is the color space commonly used by video codecs. It is also the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ arr = _convert(ydbdr_from_rgb, rgb) return arr @channel_as_last_axis() def yuv2rgb(yuv, *, channel_axis=-1): """YUV to RGB color space conversion. Parameters ---------- yuv : (..., 3, ...) array_like The image in YUV format. By default, the final dimension denotes channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `yuv` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(rgb_from_yuv, yuv) @channel_as_last_axis() def yiq2rgb(yiq, *, channel_axis=-1): """YIQ to RGB color space conversion. Parameters ---------- yiq : (..., 3, ...) array_like The image in YIQ format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `yiq` is not at least 2-D with shape (..., 3, ...). """ return _convert(rgb_from_yiq, yiq) @channel_as_last_axis() def ypbpr2rgb(ypbpr, *, channel_axis=-1): """YPbPr to RGB color space conversion. Parameters ---------- ypbpr : (..., 3, ...) array_like The image in YPbPr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ypbpr` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(rgb_from_ypbpr, ypbpr) @channel_as_last_axis() def ycbcr2rgb(ycbcr, *, channel_axis=-1): """YCbCr to RGB color space conversion. Parameters ---------- ycbcr : (..., 3, ...) array_like The image in YCbCr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ycbcr` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called "YUV". References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ arr = ycbcr.copy() arr[..., 0] -= 16 arr[..., 1] -= 128 arr[..., 2] -= 128 return _convert(rgb_from_ycbcr, arr) @channel_as_last_axis() def ydbdr2rgb(ydbdr, *, channel_axis=-1): """YDbDr to RGB color space conversion. Parameters ---------- ydbdr : (..., 3, ...) array_like The image in YDbDr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ydbdr` is not at least 2-D with shape (..., 3, ...). Notes ----- This is the color space commonly used by video codecs, also called the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ return _convert(rgb_from_ydbdr, ydbdr)