import numpy as np from numpy.testing import assert_array_almost_equal import pytest from sklearn.manifold import _mds as mds from sklearn.utils._testing import ignore_warnings def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-0.266, -0.539], [0.451, 0.252], [0.016, -0.238], [-0.200, 0.524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array( [[-1.415, -2.471], [1.633, 1.107], [0.249, -0.067], [-0.468, 1.431]] ) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) with pytest.raises(ValueError): mds.smacof(sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) with pytest.raises(ValueError): mds.smacof(sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-0.266, -0.539], [0.016, -0.238], [-0.200, 0.524]]) with pytest.raises(ValueError): mds.smacof(sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim) # TODO: Remove in 1.1 def test_MDS_pairwise_deprecated(): mds_clf = mds.MDS(metric="precomputed") msg = r"Attribute `_pairwise` was deprecated in version 0\.24" with pytest.warns(FutureWarning, match=msg): mds_clf._pairwise # TODO: Remove in 1.1 @ignore_warnings(category=FutureWarning) @pytest.mark.parametrize( "dissimilarity, expected_pairwise", [ ("precomputed", True), ("euclidean", False), ], ) def test_MDS_pairwise(dissimilarity, expected_pairwise): # _pairwise attribute is set correctly mds_clf = mds.MDS(dissimilarity=dissimilarity) assert mds_clf._pairwise == expected_pairwise