import numpy as np from statsmodels.tools.testing import ParamsTableTestBunch est = dict( rank=3, N=34, ic=1, k=3, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, N_clust=5, ll=-354.2436413025559, k_eq_model=1, ll_0=-356.2029100704882, df_m=2, chi2=5.204189583786304, p=.0741181533729996, r2_p=.0055004288638308, cmdline="poisson accident yr_con op_75_79, vce(cluster ship)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", gof="poiss_g", chi2type="Wald", opt="moptimize", vcetype="Robust", clustvar="ship", vce="cluster", title="Poisson regression", user="poiss_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ -.02172061893549, .19933709357097, -.10896426022065, .91323083771076, -.41241414311748, .36897290524649, np.nan, 1.9599639845401, 0, .22148585072024, .11093628220713, 1.9965140918162, .04587799343723, .00405473301549, .43891696842499, np.nan, 1.9599639845401, 0, 2.2697077143215, 1.1048569901548, 2.054299999499, .03994666479943, .10422780555076, 4.4351876230922, np.nan, 1.9599639845401, 0]).reshape(3, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons'.split() cov = np.array([ .03973527687332, .00976206273414, -.21171095768584, .00976206273414, .01230685870994, -.06297293767114, -.21171095768584, -.06297293767114, 1.2207089686939]).reshape(3, 3) cov_colnames = 'yr_con op_75_79 _cons'.split() cov_rownames = 'yr_con op_75_79 _cons'.split() results_poisson_clu = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=3, N=34, ic=1, k=3, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-354.2436413025559, k_eq_model=1, ll_0=-356.2029100704882, df_m=2, chi2=.1635672212515404, p=.9214713337295277, r2_p=.0055004288638308, cmdline="poisson accident yr_con op_75_79, vce(robust)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", gof="poiss_g", chi2type="Wald", opt="moptimize", vcetype="Robust", vce="robust", title="Poisson regression", user="poiss_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ -.02172061893549, .19233713248134, -.11292993014545, .91008610728406, -.39869447148862, .35525323361764, np.nan, 1.9599639845401, 0, .22148585072024, .55301404772037, .400506735106, .68878332380143, -.8624017657564, 1.3053734671969, np.nan, 1.9599639845401, 0, 2.2697077143215, .66532523368388, 3.4114258702533, .00064624070669, .96569421829539, 3.5737212103476, np.nan, 1.9599639845401, 0]).reshape(3, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons'.split() cov = np.array([ .03699357253114, -.01521223175214, -.09585501859714, -.01521223175214, .30582453697607, -.1649339692102, -.09585501859714, -.1649339692102, .44265766657651]).reshape(3, 3) cov_colnames = 'yr_con op_75_79 _cons'.split() cov_rownames = 'yr_con op_75_79 _cons'.split() results_poisson_hc1 = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=3, N=34, ic=4, k=3, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-91.28727940081573, k_eq_model=1, ll_0=-122.0974139280415, df_m=2, chi2=61.62026905445154, p=4.16225408420e-14, r2_p=.2523405986746273, cmdline="poisson accident yr_con op_75_79, exposure(service)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(service)", gof="poiss_g", chi2type="LR", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ .30633819450439, .05790831365493, 5.290055523458, 1.222792336e-07, .19283998533528, .4198364036735, np.nan, 1.9599639845401, 0, .35592229608495, .12151759298719, 2.9289775030556, .00340079035234, .11775219034206, .59409240182785, np.nan, 1.9599639845401, 0, -6.974712802772, .13252425018256, -52.629709605328, 0, -7.234455560208, -6.714970045336, np.nan, 1.9599639845401, 0]).reshape(3, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons'.split() cov = np.array([ .00335337279036, -.00315267340017, -.00589654294427, -.00315267340017, .0147665254054, -.00165060980569, -.00589654294427, -.00165060980569, .01756267688645]).reshape(3, 3) cov_colnames = 'yr_con op_75_79 _cons'.split() cov_rownames = 'yr_con op_75_79 _cons'.split() results_poisson_exposure_nonrobust = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=3, N=34, ic=4, k=3, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-91.28727940081573, k_eq_model=1, ll_0=-122.0974139280415, df_m=2, chi2=15.1822804640621, p=.0005049050167458, r2_p=.2523405986746273, cmdline="poisson accident yr_con op_75_79, exposure(service) vce(robust)", # noqa:E501 cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(service)", gof="poiss_g", chi2type="Wald", opt="moptimize", vcetype="Robust", vce="robust", title="Poisson regression", user="poiss_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ .30633819450439, .09144457613957, 3.3499875819514, .00080815183366, .12711011868929, .48556627031949, np.nan, 1.9599639845401, 0, .35592229608495, .16103531267836, 2.2102127177276, .02709040275274, .04029888299621, .67154570917369, np.nan, 1.9599639845401, 0, -6.974712802772, .2558675415017, -27.259076168227, 1.29723387e-163, -7.4762039689282, -6.4732216366159, np.nan, 1.9599639845401, 0]).reshape(3, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons'.split() cov = np.array([ .00836211050535, .00098797681063, -.01860743122756, .00098797681063, .02593237192942, -.02395236210603, -.01860743122756, -.02395236210603, .06546819879413]).reshape(3, 3) cov_colnames = 'yr_con op_75_79 _cons'.split() cov_rownames = 'yr_con op_75_79 _cons'.split() results_poisson_exposure_hc1 = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=3, N=34, ic=4, k=3, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, N_clust=5, ll=-91.28727940081573, k_eq_model=1, ll_0=-122.0974139280415, df_m=2, chi2=340.7343047354823, p=1.02443835269e-74, r2_p=.2523405986746273, cmdline="poisson accident yr_con op_75_79, exposure(service) vce(cluster ship)", # noqa:E501 cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(service)", gof="poiss_g", chi2type="Wald", opt="moptimize", vcetype="Robust", clustvar="ship", vce="cluster", title="Poisson regression", user="poiss_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ .30633819450439, .03817694295902, 8.0241677504982, 1.022165435e-15, .23151276126487, .38116362774391, np.nan, 1.9599639845401, 0, .35592229608495, .09213163536669, 3.8631930787765, .00011191448109, .17534760892947, .53649698324044, np.nan, 1.9599639845401, 0, -6.974712802772, .0968656626603, -72.003975518463, 0, -7.1645660129248, -6.7848595926192, np.nan, 1.9599639845401, 0]).reshape(3, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons'.split() cov = np.array([ .0014574789737, -.00277745275086, .00108765624666, -.00277745275086, .00848823823534, -.00469929607507, .00108765624666, -.00469929607507, .00938295660262]).reshape(3, 3) cov_colnames = 'yr_con op_75_79 _cons'.split() cov_rownames = 'yr_con op_75_79 _cons'.split() results_poisson_exposure_clu = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=4, N=34, ic=2, k=4, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=0, N_clust=5, ll=-109.0877965183258, k_eq_model=1, ll_0=-109.1684720604314, rank0=2, df_m=2, chi2=5.472439553195301, p=.0648148991694882, k_aux=1, alpha=2.330298308905143, cmdline="nbreg accident yr_con op_75_79, vce(cluster ship)", cmd="nbreg", predict="nbreg_p", dispers="mean", diparm_opt2="noprob", chi2type="Wald", opt="moptimize", vcetype="Robust", clustvar="ship", vce="cluster", title="Negative binomial regression", diparm1="lnalpha, exp label(", user="nbreg_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ -.03536709401845, .27216090050938, -.12994921001605, .89660661037787, -.56879265701682, .49805846897992, np.nan, 1.9599639845401, 0, .23211570238882, .09972456245386, 2.3275680201277, .01993505322091, .03665915160525, .42757225317239, np.nan, 1.9599639845401, 0, 2.2952623989519, 1.2335785495143, 1.8606536242509, .06279310688494, -.12250713019722, 4.7130319281011, np.nan, 1.9599639845401, 0, .84599628895555, .22483100011931, np.nan, np.nan, .40533562611357, 1.2866569517975, np.nan, 1.9599639845401, 0, 2.3302983089051, .52392329936749, np.nan, np.nan, 1.4998057895818, 3.6206622525444, np.nan, 1.9599639845401, 0]).reshape(5, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons _cons alpha'.split() cov = np.array([ .07407155576607, -.00421355148283, -.32663130963457, .02015715724983, -.00421355148283, .00994498835661, .00992613461881, -.00714955450361, -.32663130963457, .00992613461881, 1.5217160378218, -.09288283512096, .02015715724983, -.00714955450361, -.09288283512096, .05054897861465 ]).reshape(4, 4) cov_colnames = 'yr_con op_75_79 _cons _cons'.split() cov_rownames = 'yr_con op_75_79 _cons _cons'.split() results_negbin_clu = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=4, N=34, ic=2, k=4, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-109.0877965183258, k_eq_model=1, ll_0=-109.1684720604314, rank0=2, df_m=2, chi2=.1711221347493475, p=.9179970816706797, r2_p=.0007390003778831, k_aux=1, alpha=2.330298308905143, cmdline="nbreg accident yr_con op_75_79, vce(robust)", cmd="nbreg", predict="nbreg_p", dispers="mean", diparm_opt2="noprob", chi2type="Wald", opt="moptimize", vcetype="Robust", vce="robust", title="Negative binomial regression", diparm1="lnalpha, exp label(", user="nbreg_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ -.03536709401845, .26106873337039, -.13547043172065, .89223994079058, -.5470524089139, .476318220877, np.nan, 1.9599639845401, 0, .23211570238882, .56245325203342, .41268443475019, .67983783029986, -.87027241458412, 1.3345038193618, np.nan, 1.9599639845401, 0, 2.2952623989519, .76040210713867, 3.0184850586341, .00254041928465, .80490165519179, 3.7856231427121, np.nan, 1.9599639845401, 0, .84599628895555, .24005700345444, np.nan, np.nan, .37549320794823, 1.3164993699629, np.nan, 1.9599639845401, 0, 2.3302983089051, .55940442919073, np.nan, np.nan, 1.4557092049439, 3.7303399539165, np.nan, 1.9599639845401, 0]).reshape(5, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons _cons alpha'.split() cov = np.array([ .06815688354362, -.03840590969835, -.16217402790798, .02098165591138, -.03840590969835, .31635366072297, -.11049674936104, -.02643483668568, -.16217402790798, -.11049674936104, .57821136454093, -.03915049342584, .02098165591138, -.02643483668568, -.03915049342584, .05762736490753 ]).reshape(4, 4) cov_colnames = 'yr_con op_75_79 _cons _cons'.split() cov_rownames = 'yr_con op_75_79 _cons _cons'.split() results_negbin_hc1 = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=4, N=34, ic=4, k=4, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-82.49115612464289, k_eq_model=1, ll_0=-84.68893065247886, rank0=2, df_m=2, chi2=4.39554905567195, p=.1110500222994781, ll_c=-91.28727940081573, chi2_c=17.5922465523457, r2_p=.0259511427397111, k_aux=1, alpha=.2457422083490335, cmdline="nbreg accident yr_con op_75_79, exposure(service)", cmd="nbreg", predict="nbreg_p", offset="ln(service)", dispers="mean", diparm_opt2="noprob", chi2_ct="LR", chi2type="LR", opt="moptimize", vce="oim", title="Negative binomial regression", diparm1="lnalpha, exp label(", user="nbreg_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ .28503762550355, .14983643534827, 1.9023251910727, .05712865433138, -.00863639135093, .57871164235802, np.nan, 1.9599639845401, 0, .17127003537767, .27580549562862, .62098122804736, .53461197443513, -.36929880279264, .71183887354798, np.nan, 1.9599639845401, 0, -6.5908639033905, .40391814231008, -16.31732574748, 7.432080344e-60, -7.3825289150206, -5.7991988917604, np.nan, 1.9599639845401, 0, -1.4034722260565, .51305874839271, np.nan, np.nan, -2.4090488948595, -.39789555725363, np.nan, 1.9599639845401, 0, .24574220834903, .12608018984282, np.nan, np.nan, .089900758997, .67173218155228, np.nan, 1.9599639845401, 0]).reshape(5, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons _cons alpha'.split() cov = np.array([ .02245095735788, -.01097939549632, -.05127649084781, .00045725833006, -.01097939549632, .07606867141895, -.0197375670989, -.00926008351523, -.05127649084781, -.0197375670989, .16314986568722, .02198323898312, .00045725833006, -.00926008351523, .02198323898312, .26322927930229 ]).reshape(4, 4) cov_colnames = 'yr_con op_75_79 _cons _cons'.split() cov_rownames = 'yr_con op_75_79 _cons _cons'.split() results_negbin_exposure_nonrobust = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=4, N=34, ic=4, k=4, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=0, N_clust=5, ll=-82.49115612464289, k_eq_model=1, ll_0=-84.68893065247886, rank0=2, df_m=2, chi2=5.473741859983782, p=.0647727084656973, k_aux=1, alpha=.2457422083490335, cmdline="nbreg accident yr_con op_75_79, exposure(service) vce(cluster ship)", # noqa:E501 cmd="nbreg", predict="nbreg_p", offset="ln(service)", dispers="mean", diparm_opt2="noprob", chi2type="Wald", opt="moptimize", vcetype="Robust", clustvar="ship", vce="cluster", title="Negative binomial regression", diparm1="lnalpha, exp label(", user="nbreg_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="accident", properties="b V", ) params_table = np.array([ .28503762550355, .14270989695062, 1.9973220610073, .04579020833966, .00533136724292, .56474388376418, np.nan, 1.9599639845401, 0, .17127003537767, .17997186802799, .95164892854829, .34127505843023, -.18146834418759, .52400841494293, np.nan, 1.9599639845401, 0, -6.5908639033905, .62542746996715, -10.538174640357, 5.760612980e-26, -7.8166792194681, -5.3650485873129, np.nan, 1.9599639845401, 0, -1.4034722260565, .86579403765571, np.nan, np.nan, -3.1003973578913, .29345290577817, np.nan, 1.9599639845401, 0, .24574220834903, .21276213878894, np.nan, np.nan, .0450313052935, 1.3410500222158, np.nan, 1.9599639845401, 0]).reshape(5, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'yr_con op_75_79 _cons _cons alpha'.split() cov = np.array([ .02036611468766, -.00330004038514, -.08114367170947, -.07133030733881, -.00330004038514, .03238987328148, -.03020509748676, -.09492663454187, -.08114367170947, -.03020509748676, .39115952018952, .43276143586693, -.07133030733881, -.09492663454187, .43276143586693, .74959931564018 ]).reshape(4, 4) cov_colnames = 'yr_con op_75_79 _cons _cons'.split() cov_rownames = 'yr_con op_75_79 _cons _cons'.split() results_negbin_exposure_clu = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est )