import numpy as np from statsmodels.tools.testing import ParamsTableTestBunch est = dict( rank=13, N=758, Q=.0150568875809373, J=11.41312078635046, J_df=2, k_1=13, converged=1, has_xtinst=0, type=1, n_eq=1, k=13, n_moments=15, k_aux=13, k_eq_model=0, ic=6, k_eq=13, cmdline="gmm (lw - {xb:s iq expr tenure rns smsa dyear*} - {b0}) , instruments(expr tenure rns smsa dyear* med kww age mrt) igmm", # noqa:E501 cmd="gmm", estat_cmd="gmm_estat", predict="gmm_p", marginsnotok="_ALL", eqnames="1", technique="gn", winit="Unadjusted", estimator="igmm", wmatrix="robust", vce="robust", vcetype="Robust", params="xb_s xb_iq xb_expr xb_tenure xb_rns xb_smsa xb_dyear_67 xb_dyear_68 xb_dyear_69 xb_dyear_70 xb_dyear_71 xb_dyear_73 b0", # noqa:E501 inst_1="expr tenure rns smsa dyear_67 dyear_68 dyear_69 dyear_70 dyear_71 dyear_73 med kww age mrt _cons", # noqa:E501 params_1="xb_s xb_iq xb_expr xb_tenure xb_rns xb_smsa xb_dyear_67 xb_dyear_68 xb_dyear_69 xb_dyear_70 xb_dyear_71 xb_dyear_73 b0", # noqa:E501 sexp_1="lw - ({xb_s} *s + {xb_iq} *iq + {xb_expr} *expr + {xb_tenure} *tenure + {xb_rns} *rns + {xb_smsa} *smsa + {xb_dyear_67} *dyear_67 + {xb_dyear_68} *dyear_68 + {xb_dyear_69} *dyear_69 + {xb_dyear_70} *dyear_70 + {xb_dyear_71} *dyear_71 + {xb_dyear_73} *dyear_73) - {b0}", # noqa:E501 properties="b V", ) params_table = np.array([ .17587739850768, .02085563162829, 8.4330890400415, 3.366583555e-17, .1350011116414, .21675368537396, np.nan, 1.9599639845401, 0, -.00928586712743, .00491894287617, -1.88777697997, .05905589683705, -.01892681800673, .00035508375188, np.nan, 1.9599639845401, 0, .05031651549731, .00810558790493, 6.2076330659127, 5.378855978e-10, .03442985513012, .0662031758645, np.nan, 1.9599639845401, 0, .04246235782951, .00956418082077, 4.4397276280375, 9.007280073e-06, .02371690787918, .06120780777985, np.nan, 1.9599639845401, 0, -.1039476753865, .03373281188749, -3.0815004611293, .00205960157647, -.17006277178325, -.03783257898975, np.nan, 1.9599639845401, 0, .12477256813508, .03099244898605, 4.0259021864082, .0000567572801, .06402848432973, .18551665194043, np.nan, 1.9599639845401, 0, -.05297127223127, .0517946935923, -1.0227162003936, .30644204936546, -.15448700626247, .04854446179993, np.nan, 1.9599639845401, 0, .04564516152971, .05001865637643, .91256272831865, .36147256434055, -.05238960352318, .1436799265826, np.nan, 1.9599639845401, 0, .15574543741982, .04802004585645, 3.2433421218593, .00118136262363, .06162787700523, .24986299783442, np.nan, 1.9599639845401, 0, .16681173496168, .06134387289984, 2.7192892635594, .00654223677971, .0465799534058, .28704351651757, np.nan, 1.9599639845401, 0, .08417610675323, .05582688740597, 1.507805838092, .13160422753823, -.02524258193145, .19359479543791, np.nan, 1.9599639845401, 0, .09964580476612, .06124947866865, 1.6268841291727, .10376170930541, -.02040096749628, .21969257702853, np.nan, 1.9599639845401, 0, 4.0027753075622, .33649589464938, 11.895465505554, 1.249543428e-32, 3.3432554731038, 4.6622951420205, np.nan, 1.9599639845401, 0]).reshape(13, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['_cons'] * 13 cov = np.array([ .00043495737061, -.00007938790704, .00002809207919, .00001486824321, -.00017806650894, -6.696078938e-06, -.00011595347261, -.00018816769626, -.00012205118386, -.00008281236274, -.00031504876539, -.00063574245306, .00264272738846, -.00007938790704, .00002419599902, 4.932871670e-06, -.00001114848619, .00006618803917, -.00002202930782, 4.808220835e-07, .00003206765662, -.00002261059773, -.00006024105579, -.00001412126593, .00001474591556, -.00144330101198, .00002809207919, 4.932871670e-06, .00006570055528, -.0000203894891, .00005213529923, -.00003297805448, .00003595284891, .00008758906787, .00003058926358, .00001696423798, -.00008568569767, -.00013140753648, -.00094326672008, .00001486824321, -.00001114848619, -.0000203894891, .00009147355477, -.00003774547245, 7.828122784e-06, .00008484461309, .00006729820252, .00011236802193, .00010082715772, .00011217081931, .00009440153548, .00075659901252, -.00017806650894, .00006618803917, .00005213529923, -.00003774547245, .00113790259784, .00013005865302, .00018021354375, .00018779266096, -9.435310865e-06, .0000165483542, -.00005323328914, .00008265052168, -.00499436873124, -6.696078938e-06, -.00002202930782, -.00003297805448, 7.828122784e-06, .00013005865302, .00096053189415, .00005704546746, .00011160225767, .00025285680201, .00010656723202, .00030213005331, .00030792696913, .00157128168902, -.00011595347261, 4.808220835e-07, .00003595284891, .00008484461309, .00018021354375, .00005704546746, .00268269028432, .00085942321667, .00091151417222, .00096327250114, .00090372304081, .00102768195348, .00034563629591, -.00018816769626, .00003206765662, .00008758906787, .00006729820252, .00018779266096, .00011160225767, .00085942321667, .0025018659857, .00092591134763, .00088266305412, .0008241186538, .00095084381197, -.00206285154639, -.00012205118386, -.00002261059773, .00003058926358, .00011236802193, -9.435310865e-06, .00025285680201, .00091151417222, .00092591134763, .00230592480406, .00118265696692, .0011106470199, .00129290662149, .00256049741814, -.00008281236274, -.00006024105579, .00001696423798, .00010082715772, .0000165483542, .00010656723202, .00096327250114, .00088266305412, .00118265696692, .00376307074235, .00124584145426, .00155915431219, .00599086304364, -.00031504876539, -.00001412126593, -.00008568569767, .00011217081931, -.00005323328914, .00030213005331, .00090372304081, .0008241186538, .0011106470199, .00124584145426, .00311664135744, .0018437604357, .00431259131307, -.00063574245306, .00001474591556, -.00013140753648, .00009440153548, .00008265052168, .00030792696913, .00102768195348, .00095084381197, .00129290662149, .00155915431219, .0018437604357, .00375149863718, .00538769349865, .00264272738846, -.00144330101198, -.00094326672008, .00075659901252, -.00499436873124, .00157128168902, .00034563629591, -.00206285154639, .00256049741814, .00599086304364, .00431259131307, .00538769349865, .11322948711589]).reshape(13, 13) cov_colnames = ['_cons'] * 13 cov_rownames = ['_cons'] * 13 results = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est )