import numpy as np import pytest from numpy.testing import assert_allclose, assert_equal, assert_raises from statsmodels.tsa.stattools import acovf from statsmodels.tsa.innovations.arma_innovations import arma_innovations from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import dowj, lake from statsmodels.tsa.arima.estimators.yule_walker import yule_walker @pytest.mark.low_precision('Test against Example 5.1.1 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_511(): # Make the series stationary endog = dowj.diff().iloc[1:] # Should have 77 observations assert_equal(len(endog), 77) # Autocovariances desired = [0.17992, 0.07590, 0.04885] assert_allclose(acovf(endog, fft=True, nlag=2), desired, atol=1e-5) # Yule-Walker yw, _ = yule_walker(endog, ar_order=1, demean=True) assert_allclose(yw.ar_params, [0.4219], atol=1e-4) assert_allclose(yw.sigma2, 0.1479, atol=1e-4) @pytest.mark.low_precision('Test against Example 5.1.4 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_514(): # Note: this example is primarily tested in # test_burg::test_brockwell_davis_example_514. # Get the lake data, demean endog = lake.copy() # Yule-Walker res, _ = yule_walker(endog, ar_order=2, demean=True) assert_allclose(res.ar_params, [1.0538, -0.2668], atol=1e-4) assert_allclose(res.sigma2, 0.4920, atol=1e-4) def check_itsmr(lake): # Test against R itsmr::yw; see results/results_yw_dl.R yw, _ = yule_walker(lake, 5) desired = [1.08213598501, -0.39658257147, 0.11793957728, -0.03326633983, 0.06209208707] assert_allclose(yw.ar_params, desired) # stats::ar.yw return the innovations algorithm estimate of the variance u, v = arma_innovations(np.array(lake) - np.mean(lake), ar_params=yw.ar_params, sigma2=1) desired_sigma2 = 0.4716322564 assert_allclose(np.sum(u**2 / v) / len(u), desired_sigma2) def test_itsmr(): # Note: apparently itsmr automatically demeans (there is no option to # control this) endog = lake.copy() check_itsmr(endog) # Pandas series check_itsmr(endog.values) # Numpy array check_itsmr(endog.tolist()) # Python list def test_invalid(): endog = np.arange(2) * 1.0 assert_raises(ValueError, yule_walker, endog, ar_order=-1) assert_raises(ValueError, yule_walker, endog, ar_order=1.5) endog = np.arange(10) * 1.0 assert_raises(ValueError, yule_walker, endog, ar_order=[1, 3]) @pytest.mark.xfail(reason='TODO: this does not raise an error due to the way' ' linear_model.yule_walker works.') def test_invalid_xfail(): endog = np.arange(2) * 1.0 # TODO: this does not raise an error due to the way Statsmodels' # yule_walker function works assert_raises(ValueError, yule_walker, endog, ar_order=2)