import numpy as np import pandas as pd import statsmodels.datasets.macrodata from statsmodels.tsa.vector_ar.svar_model import SVAR mdatagen = statsmodels.datasets.macrodata.load().data mdata = mdatagen[['realgdp','realcons','realinv']] names = mdata.dtype.names start = pd.datetime(1959, 3, 31) end = pd.datetime(2009, 9, 30) #qtr = pd.DatetimeIndex(start=start, end=end, freq=pd.datetools.BQuarterEnd()) qtr = pd.date_range(start=start, end=end, freq='BQ-MAR') data = pd.DataFrame(mdata, index=qtr) data = (np.log(data)).diff().dropna() #define structural inputs A = np.asarray([[1, 0, 0],['E', 1, 0],['E', 'E', 1]]) B = np.asarray([['E', 0, 0], [0, 'E', 0], [0, 0, 'E']]) A_guess = np.asarray([0.5, 0.25, -0.38]) B_guess = np.asarray([0.5, 0.1, 0.05]) mymodel = SVAR(data, svar_type='AB', A=A, B=B, freq='Q') res = mymodel.fit(maxlags=3, maxiter=10000, maxfun=10000, solver='bfgs') res.irf(periods=30).plot(impulse='realgdp', plot_stderr=True, stderr_type='mc', repl=100)