from sympy.concrete.products import (Product, product) from sympy.concrete.summations import Sum from sympy.core.function import (Derivative, Function, diff) from sympy.core.numbers import (Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.combinatorial.factorials import (rf, factorial) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.simplify.combsimp import combsimp from sympy.simplify.simplify import simplify from sympy.testing.pytest import raises a, k, n, m, x = symbols('a,k,n,m,x', integer=True) f = Function('f') def test_karr_convention(): # Test the Karr product convention that we want to hold. # See his paper "Summation in Finite Terms" for a detailed # reasoning why we really want exactly this definition. # The convention is described for sums on page 309 and # essentially in section 1.4, definition 3. For products # we can find in analogy: # # \prod_{m <= i < n} f(i) 'has the obvious meaning' for m < n # \prod_{m <= i < n} f(i) = 0 for m = n # \prod_{m <= i < n} f(i) = 1 / \prod_{n <= i < m} f(i) for m > n # # It is important to note that he defines all products with # the upper limit being *exclusive*. # In contrast, SymPy and the usual mathematical notation has: # # prod_{i = a}^b f(i) = f(a) * f(a+1) * ... * f(b-1) * f(b) # # with the upper limit *inclusive*. So translating between # the two we find that: # # \prod_{m <= i < n} f(i) = \prod_{i = m}^{n-1} f(i) # # where we intentionally used two different ways to typeset the # products and its limits. i = Symbol("i", integer=True) k = Symbol("k", integer=True) j = Symbol("j", integer=True, positive=True) # A simple example with a concrete factors and symbolic limits. # The normal product: m = k and n = k + j and therefore m < n: m = k n = k + j a = m b = n - 1 S1 = Product(i**2, (i, a, b)).doit() # The reversed product: m = k + j and n = k and therefore m > n: m = k + j n = k a = m b = n - 1 S2 = Product(i**2, (i, a, b)).doit() assert S1 * S2 == 1 # Test the empty product: m = k and n = k and therefore m = n: m = k n = k a = m b = n - 1 Sz = Product(i**2, (i, a, b)).doit() assert Sz == 1 # Another example this time with an unspecified factor and # numeric limits. (We can not do both tests in the same example.) f = Function("f") # The normal product with m < n: m = 2 n = 11 a = m b = n - 1 S1 = Product(f(i), (i, a, b)).doit() # The reversed product with m > n: m = 11 n = 2 a = m b = n - 1 S2 = Product(f(i), (i, a, b)).doit() assert simplify(S1 * S2) == 1 # Test the empty product with m = n: m = 5 n = 5 a = m b = n - 1 Sz = Product(f(i), (i, a, b)).doit() assert Sz == 1 def test_karr_proposition_2a(): # Test Karr, page 309, proposition 2, part a i, u, v = symbols('i u v', integer=True) def test_the_product(m, n): # g g = i**3 + 2*i**2 - 3*i # f = Delta g f = simplify(g.subs(i, i+1) / g) # The product a = m b = n - 1 P = Product(f, (i, a, b)).doit() # Test if Product_{m <= i < n} f(i) = g(n) / g(m) assert combsimp(P / (g.subs(i, n) / g.subs(i, m))) == 1 # m < n test_the_product(u, u + v) # m = n test_the_product(u, u) # m > n test_the_product(u + v, u) def test_karr_proposition_2b(): # Test Karr, page 309, proposition 2, part b i, u, v, w = symbols('i u v w', integer=True) def test_the_product(l, n, m): # Productmand s = i**3 # First product a = l b = n - 1 S1 = Product(s, (i, a, b)).doit() # Second product a = l b = m - 1 S2 = Product(s, (i, a, b)).doit() # Third product a = m b = n - 1 S3 = Product(s, (i, a, b)).doit() # Test if S1 = S2 * S3 as required assert combsimp(S1 / (S2 * S3)) == 1 # l < m < n test_the_product(u, u + v, u + v + w) # l < m = n test_the_product(u, u + v, u + v) # l < m > n test_the_product(u, u + v + w, v) # l = m < n test_the_product(u, u, u + v) # l = m = n test_the_product(u, u, u) # l = m > n test_the_product(u + v, u + v, u) # l > m < n test_the_product(u + v, u, u + w) # l > m = n test_the_product(u + v, u, u) # l > m > n test_the_product(u + v + w, u + v, u) def test_simple_products(): assert product(2, (k, a, n)) == 2**(n - a + 1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k + 1, (k, 0, n - 1)) == factorial(n) assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a) assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2) assert isinstance(product(k**k, (k, 1, n)), Product) assert Product(x**k, (k, 1, n)).variables == [k] raises(ValueError, lambda: Product(n)) raises(ValueError, lambda: Product(n, k)) raises(ValueError, lambda: Product(n, k, 1)) raises(ValueError, lambda: Product(n, k, 1, 10)) raises(ValueError, lambda: Product(n, (k, 1))) assert product(1, (n, 1, oo)) == 1 # issue 8301 assert product(2, (n, 1, oo)) is oo assert product(-1, (n, 1, oo)).func is Product def test_multiple_products(): assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2) assert product(f(n), ( n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit() assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \ Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \ product(f(n), (m, 1, k), (n, 1, k)) == \ product(product(f(n), (m, 1, k)), (n, 1, k)) == \ Product(f(n)**k, (n, 1, k)) assert Product( x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n)) assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k] def test_rational_products(): assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n) def test_special_products(): # Wallis product assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \ 4**n*factorial(n)**2/rf(S.Half, n)/rf(Rational(3, 2), n) # Euler's product formula for sin assert product(1 + a/k**2, (k, 1, n)) == \ rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2 def test__eval_product(): from sympy.abc import i, n # issue 4809 a = Function('a') assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n)) # issue 4810 assert product(2**i, (i, 1, n)) == 2**(n*(n + 1)/2) k, m = symbols('k m', integer=True) assert product(2**i, (i, k, m)) == 2**(-k**2/2 + k/2 + m**2/2 + m/2) n = Symbol('n', negative=True, integer=True) p = Symbol('p', positive=True, integer=True) assert product(2**i, (i, n, p)) == 2**(-n**2/2 + n/2 + p**2/2 + p/2) assert product(2**i, (i, p, n)) == 2**(n**2/2 + n/2 - p**2/2 + p/2) def test_product_pow(): # issue 4817 assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n)) assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n)) def test_infinite_product(): # issue 5737 assert isinstance(Product(2**(1/factorial(n)), (n, 0, oo)), Product) def test_conjugate_transpose(): p = Product(x**k, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() A, B = symbols("A B", commutative=False) p = Product(A*B**k, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() p = Product(B**k*A, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_simplify_prod(): y, t, b, c = symbols('y, t, b, c', integer = True) _simplify = lambda e: simplify(e, doit=False) assert _simplify(Product(x*y, (x, n, m), (y, a, k)) * \ Product(y, (x, n, m), (y, a, k))) == \ Product(x*y**2, (x, n, m), (y, a, k)) assert _simplify(3 * y* Product(x, (x, n, m)) * Product(x, (x, m + 1, a))) \ == 3 * y * Product(x, (x, n, a)) assert _simplify(Product(x, (x, k + 1, a)) * Product(x, (x, n, k))) == \ Product(x, (x, n, a)) assert _simplify(Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))) == \ Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k)) assert _simplify(Product(x, (t, a, b)) * Product(y, (t, a, b)) * \ Product(x, (t, b+1, c))) == Product(x*y, (t, a, b)) * \ Product(x, (t, b+1, c)) assert _simplify(Product(x, (t, a, b)) * Product(x, (t, b+1, c)) * \ Product(y, (t, a, b))) == Product(x*y, (t, a, b)) * \ Product(x, (t, b+1, c)) def test_change_index(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Product(x, (x, a, b)).change_index(x, x + 1, y) == \ Product(y - 1, (y, a + 1, b + 1)) assert Product(x**2, (x, a, b)).change_index(x, x - 1) == \ Product((x + 1)**2, (x, a - 1, b - 1)) assert Product(x**2, (x, a, b)).change_index(x, -x, y) == \ Product((-y)**2, (y, -b, -a)) assert Product(x, (x, a, b)).change_index(x, -x - 1) == \ Product(-x - 1, (x, - b - 1, -a - 1)) assert Product(x*y, (x, a, b), (y, c, d)).change_index(x, x - 1, z) == \ Product((z + 1)*y, (z, a - 1, b - 1), (y, c, d)) def test_reorder(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Product(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \ Product(x*y, (y, c, d), (x, a, b)) assert Product(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \ Product(x, (x, c, d), (x, a, b)) assert Product(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\ (2, 0), (0, 1)) == Product(x*y + z, (z, m, n), (y, c, d), (x, a, b)) assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (0, 1), (1, 2), (0, 2)) == \ Product(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (x, y), (y, z), (x, z)) == \ Product(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Product(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \ Product(x*y, (y, c, d), (x, a, b)) assert Product(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \ Product(x*y, (y, c, d), (x, a, b)) def test_Product_is_convergent(): assert Product(1/n**2, (n, 1, oo)).is_convergent() is S.false assert Product(exp(1/n**2), (n, 1, oo)).is_convergent() is S.true assert Product(1/n, (n, 1, oo)).is_convergent() is S.false assert Product(1 + 1/n, (n, 1, oo)).is_convergent() is S.false assert Product(1 + 1/n**2, (n, 1, oo)).is_convergent() is S.true def test_reverse_order(): x, y, a, b, c, d= symbols('x, y, a, b, c, d', integer = True) assert Product(x, (x, 0, 3)).reverse_order(0) == Product(1/x, (x, 4, -1)) assert Product(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \ Product(x*y, (x, 6, 0), (y, 7, -1)) assert Product(x, (x, 1, 2)).reverse_order(0) == Product(1/x, (x, 3, 0)) assert Product(x, (x, 1, 3)).reverse_order(0) == Product(1/x, (x, 4, 0)) assert Product(x, (x, 1, a)).reverse_order(0) == Product(1/x, (x, a + 1, 0)) assert Product(x, (x, a, 5)).reverse_order(0) == Product(1/x, (x, 6, a - 1)) assert Product(x, (x, a + 1, a + 5)).reverse_order(0) == \ Product(1/x, (x, a + 6, a)) assert Product(x, (x, a + 1, a + 2)).reverse_order(0) == \ Product(1/x, (x, a + 3, a)) assert Product(x, (x, a + 1, a + 1)).reverse_order(0) == \ Product(1/x, (x, a + 2, a)) assert Product(x, (x, a, b)).reverse_order(0) == Product(1/x, (x, b + 1, a - 1)) assert Product(x, (x, a, b)).reverse_order(x) == Product(1/x, (x, b + 1, a - 1)) assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \ Product(x*y, (x, b + 1, a - 1), (y, 6, 1)) assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \ Product(x*y, (x, b + 1, a - 1), (y, 6, 1)) def test_issue_9983(): n = Symbol('n', integer=True, positive=True) p = Product(1 + 1/n**Rational(2, 3), (n, 1, oo)) assert p.is_convergent() is S.false assert product(1 + 1/n**Rational(2, 3), (n, 1, oo)) == p.doit() def test_issue_13546(): n = Symbol('n') k = Symbol('k') p = Product(n + 1 / 2**k, (k, 0, n-1)).doit() assert p.subs(n, 2).doit() == Rational(15, 2) def test_issue_14036(): a, n = symbols('a n') assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0 def test_rewrite_Sum(): assert Product(1 - S.Half**2/k**2, (k, 1, oo)).rewrite(Sum) == \ exp(Sum(log(1 - 1/(4*k**2)), (k, 1, oo))) def test_KroneckerDelta_Product(): y = Symbol('y') assert Product(x*KroneckerDelta(x, y), (x, 0, 1)).doit() == 0 def test_issue_20848(): _i = Dummy('i') t, y, z = symbols('t y z') assert diff(Product(x, (y, 1, z)), x).as_dummy() == Sum(Product(x, (y, 1, _i - 1))*Product(x, (y, _i + 1, z)), (_i, 1, z)).as_dummy() assert diff(Product(x, (y, 1, z)), x).doit() == x**z*z/x assert diff(Product(x, (y, x, z)), x) == Derivative(Product(x, (y, x, z)), x) assert diff(Product(t, (x, 1, z)), x) == S(0) assert Product(sin(n*x), (n, -1, 1)).diff(x).doit() == S(0)