from sympy.core.function import (diff, expand_func) from sympy.core.numbers import I from sympy.core.symbol import (Dummy, symbols) from sympy.functions.elementary.complexes import conjugate from sympy.functions.special.beta_functions import (beta, betainc, betainc_regularized) from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.integrals.integrals import Integral from sympy.functions.special.gamma_functions import polygamma from sympy.core.function import ArgumentIndexError from sympy.core.expr import unchanged from sympy.testing.pytest import raises def test_beta(): x, y = symbols('x y') t = Dummy('t') assert unchanged(beta, x, y) assert beta(5, -3).is_real == True assert beta(3, y).is_real is None assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y) assert expand_func(beta(x, y) - beta(y, x)) == 0 # Symmetric assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify() assert diff(beta(x, y), x) == beta(x, y)*(polygamma(0, x) - polygamma(0, x + y)) assert diff(beta(x, y), y) == beta(x, y)*(polygamma(0, y) - polygamma(0, x + y)) assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y)) raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3)) assert beta(x, y).rewrite(gamma) == gamma(x)*gamma(y)/gamma(x + y) assert beta(x).rewrite(gamma) == gamma(x)**2/gamma(2*x) assert beta(x, y).rewrite(Integral).dummy_eq(Integral(t**(x - 1) * (1 - t)**(y - 1), (t, 0, 1))) def test_betainc(): a, b, x1, x2 = symbols('a b x1 x2') assert unchanged(betainc, a, b, x1, x2) assert unchanged(betainc, a, b, 0, x1) assert betainc(1, 2, 0, -5).is_real == True assert betainc(1, 2, 0, x2).is_real is None assert conjugate(betainc(I, 2, 3 - I, 1 + 4*I)) == betainc(-I, 2, 3 + I, 1 - 4*I) assert betainc(a, b, 0, 1).rewrite(Integral).dummy_eq(beta(a, b).rewrite(Integral)) assert betainc(1, 2, 0, x2).rewrite(hyper) == x2*hyper((1, -1), (2,), x2) assert betainc(1, 2, 3, 3).evalf() == 0 def test_betainc_regularized(): a, b, x1, x2 = symbols('a b x1 x2') assert unchanged(betainc_regularized, a, b, x1, x2) assert unchanged(betainc_regularized, a, b, 0, x1) assert betainc_regularized(3, 5, 0, -1).is_real == True assert betainc_regularized(3, 5, 0, x2).is_real is None assert conjugate(betainc_regularized(3*I, 1, 2 + I, 1 + 2*I)) == betainc_regularized(-3*I, 1, 2 - I, 1 - 2*I) assert betainc_regularized(a, b, 0, 1).rewrite(Integral) == 1 assert betainc_regularized(1, 2, x1, x2).rewrite(hyper) == 2*x2*hyper((1, -1), (2,), x2) - 2*x1*hyper((1, -1), (2,), x1) assert betainc_regularized(4, 1, 5, 5).evalf() == 0