# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains functions/values used repeatedly in different modules of the ``builtin_frames`` package. """ import warnings import erfa import numpy as np from astropy import units as u from astropy.time import Time from astropy.coordinates.earth import EarthLocation from astropy.utils import iers from astropy.utils.exceptions import AstropyWarning from ..representation import CartesianDifferential # We use tt as the time scale for this equinoxes, primarily because it is the # convention for J2000 (it is unclear if there is any "right answer" for B1950) # while #8600 makes this the default behavior, we show it here to ensure it's # clear which is used here EQUINOX_J2000 = Time('J2000', scale='tt') EQUINOX_B1950 = Time('B1950', scale='tt') # This is a time object that is the default "obstime" when such an attribute is # necessary. Currently, we use J2000. DEFAULT_OBSTIME = Time('J2000', scale='tt') # This is an EarthLocation that is the default "location" when such an attribute is # necessary. It is the centre of the Earth. EARTH_CENTER = EarthLocation(0*u.km, 0*u.km, 0*u.km) PIOVER2 = np.pi / 2. # comes from the mean of the 1962-2014 IERS B data _DEFAULT_PM = (0.035, 0.29)*u.arcsec def get_polar_motion(time): """ gets the two polar motion components in radians for use with apio """ # Get the polar motion from the IERS table iers_table = iers.earth_orientation_table.get() xp, yp, status = iers_table.pm_xy(time, return_status=True) wmsg = ( 'Tried to get polar motions for times {} IERS data is ' 'valid. Defaulting to polar motion from the 50-yr mean for those. ' 'This may affect precision at the arcsec level. Please check your ' 'astropy.utils.iers.conf.iers_auto_url and point it to a newer ' 'version if necessary.' ) if np.any(status == iers.TIME_BEFORE_IERS_RANGE): xp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format('before'), AstropyWarning) if np.any(status == iers.TIME_BEYOND_IERS_RANGE): xp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format('after'), AstropyWarning) return xp.to_value(u.radian), yp.to_value(u.radian) def _warn_iers(ierserr): """ Generate a warning for an IERSRangeerror Parameters ---------- ierserr : An `~astropy.utils.iers.IERSRangeError` """ msg = '{0} Assuming UT1-UTC=0 for coordinate transformations.' warnings.warn(msg.format(ierserr.args[0]), AstropyWarning) def get_dut1utc(time): """ This function is used to get UT1-UTC in coordinates because normally it gives an error outside the IERS range, but in coordinates we want to allow it to go through but with a warning. """ try: return time.delta_ut1_utc except iers.IERSRangeError as e: _warn_iers(e) return np.zeros(time.shape) def get_jd12(time, scale): """ Gets ``jd1`` and ``jd2`` from a time object in a particular scale. Parameters ---------- time : `~astropy.time.Time` The time to get the jds for scale : str The time scale to get the jds for Returns ------- jd1 : float jd2 : float """ if time.scale == scale: newtime = time else: try: newtime = getattr(time, scale) except iers.IERSRangeError as e: _warn_iers(e) newtime = time return newtime.jd1, newtime.jd2 def norm(p): """ Normalise a p-vector. """ return p / np.sqrt(np.einsum('...i,...i', p, p))[..., np.newaxis] def pav2pv(p, v): """ Combine p- and v- vectors into a pv-vector. """ pv = np.empty(np.broadcast(p, v).shape[:-1], erfa.dt_pv) pv['p'] = p pv['v'] = v return pv def get_cip(jd1, jd2): """ Find the X, Y coordinates of the CIP and the CIO locator, s. Parameters ---------- jd1 : float or `np.ndarray` First part of two part Julian date (TDB) jd2 : float or `np.ndarray` Second part of two part Julian date (TDB) Returns ------- x : float or `np.ndarray` x coordinate of the CIP y : float or `np.ndarray` y coordinate of the CIP s : float or `np.ndarray` CIO locator, s """ # classical NPB matrix, IAU 2006/2000A rpnb = erfa.pnm06a(jd1, jd2) # CIP X, Y coordinates from array x, y = erfa.bpn2xy(rpnb) # CIO locator, s s = erfa.s06(jd1, jd2, x, y) return x, y, s def aticq(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAticq``. ``eraAticq`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of aticq in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAtciqz`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's aticq assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric GCRS or CIRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- rc : float or `~numpy.ndarray` Right Ascension in radians dc : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # RA, Dec to cartesian unit vectors pos = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Bias-precession-nutation, giving GCRS proper direction. ppr = erfa.trxp(astrom['bpn'], pos) # Aberration, giving GCRS natural direction d = np.zeros_like(ppr) for j in range(2): before = norm(ppr-d) after = erfa.ab(before, astrom['v'], astrom['em'], astrom['bm1']) d = after - before pnat = norm(ppr-d) # Light deflection by the Sun, giving BCRS coordinate direction d = np.zeros_like(pnat) for j in range(5): before = norm(pnat-d) if ignore_distance: # No distance to object, assume a long way away q = before else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom['em'][..., np.newaxis] * astrom['eh'] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * before sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, before) after = erfa.ld(1.0, before, q, astrom['eh'], astrom['em'], 1e-6) d = after - before pco = norm(pnat-d) # ICRS astrometric RA, Dec rc, dc = erfa.c2s(pco) return erfa.anp(rc), dc def atciqz(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAtciqz``. ``eraAtciqz`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of atciqz in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAticq`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's atciqz assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric ICRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- ri : float or `~numpy.ndarray` Right Ascension in radians di : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # BCRS coordinate direction (unit vector). pco = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Find BCRS direction of Sun to object if ignore_distance: # No distance to object, assume a long way away q = pco else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom['em'][..., np.newaxis] * astrom['eh'] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * pco sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, pco) # Light deflection by the Sun, giving BCRS natural direction. pnat = erfa.ld(1.0, pco, q, astrom['eh'], astrom['em'], 1e-6) # Aberration, giving GCRS proper direction. ppr = erfa.ab(pnat, astrom['v'], astrom['em'], astrom['bm1']) # Bias-precession-nutation, giving CIRS proper direction. # Has no effect if matrix is identity matrix, in which case gives GCRS ppr. pi = erfa.rxp(astrom['bpn'], ppr) # CIRS (GCRS) RA, Dec ri, di = erfa.c2s(pi) return erfa.anp(ri), di def prepare_earth_position_vel(time): """ Get barycentric position and velocity, and heliocentric position of Earth Parameters ---------- time : `~astropy.time.Time` time at which to calculate position and velocity of Earth Returns ------- earth_pv : `np.ndarray` Barycentric position and velocity of Earth, in au and au/day earth_helio : `np.ndarray` Heliocentric position of Earth in au """ # this goes here to avoid circular import errors from astropy.coordinates.solar_system import ( get_body_barycentric, get_body_barycentric_posvel, solar_system_ephemeris, ) # get barycentric position and velocity of earth ephemeris = solar_system_ephemeris.get() # if we are using the builtin erfa based ephemeris, # we can use the fact that epv00 already provides all we need. # This avoids calling epv00 twice, once # in get_body_barycentric_posvel('earth') and once in # get_body_barycentric('sun') if ephemeris == 'builtin': jd1, jd2 = get_jd12(time, 'tdb') earth_pv_heliocentric, earth_pv = erfa.epv00(jd1, jd2) earth_heliocentric = earth_pv_heliocentric['p'] # all other ephemeris providers probably don't have a shortcut like this else: earth_p, earth_v = get_body_barycentric_posvel('earth', time) # get heliocentric position of earth, preparing it for passing to erfa. sun = get_body_barycentric('sun', time) earth_heliocentric = (earth_p - sun).get_xyz(xyz_axis=-1).to_value(u.au) # Also prepare earth_pv for passing to erfa, which wants it as # a structured dtype. earth_pv = pav2pv( earth_p.get_xyz(xyz_axis=-1).to_value(u.au), earth_v.get_xyz(xyz_axis=-1).to_value(u.au / u.d) ) return earth_pv, earth_heliocentric def get_offset_sun_from_barycenter(time, include_velocity=False, reverse=False): """ Returns the offset of the Sun center from the solar-system barycenter (SSB). Parameters ---------- time : `~astropy.time.Time` Time at which to calculate the offset include_velocity : `bool` If ``True``, attach the velocity as a differential. Defaults to ``False``. reverse : `bool` If ``True``, return the offset of the barycenter from the Sun. Defaults to ``False``. Returns ------- `~astropy.coordinates.CartesianRepresentation` The offset """ if include_velocity: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric_posvel offset_pos, offset_vel = get_body_barycentric_posvel('sun', time) if reverse: offset_pos, offset_vel = -offset_pos, -offset_vel offset_vel = offset_vel.represent_as(CartesianDifferential) offset_pos = offset_pos.with_differentials(offset_vel) else: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric offset_pos = get_body_barycentric('sun', time) if reverse: offset_pos = -offset_pos return offset_pos