# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains convenience functions implementing some of the algorithms contained within Jean Meeus, 'Astronomical Algorithms', second edition, 1998, Willmann-Bell. """ import numpy as np from numpy.polynomial.polynomial import polyval import erfa from astropy.utils import deprecated from astropy import units as u from . import ICRS, SkyCoord, GeocentricTrueEcliptic from .builtin_frames.utils import get_jd12 __all__ = ["calc_moon"] # Meeus 1998: table 47.A # D M M' F l r _MOON_L_R = ( (0, 0, 1, 0, 6288774, -20905355), (2, 0, -1, 0, 1274027, -3699111), (2, 0, 0, 0, 658314, -2955968), (0, 0, 2, 0, 213618, -569925), (0, 1, 0, 0, -185116, 48888), (0, 0, 0, 2, -114332, -3149), (2, 0, -2, 0, 58793, 246158), (2, -1, -1, 0, 57066, -152138), (2, 0, 1, 0, 53322, -170733), (2, -1, 0, 0, 45758, -204586), (0, 1, -1, 0, -40923, -129620), (1, 0, 0, 0, -34720, 108743), (0, 1, 1, 0, -30383, 104755), (2, 0, 0, -2, 15327, 10321), (0, 0, 1, 2, -12528, 0), (0, 0, 1, -2, 10980, 79661), (4, 0, -1, 0, 10675, -34782), (0, 0, 3, 0, 10034, -23210), (4, 0, -2, 0, 8548, -21636), (2, 1, -1, 0, -7888, 24208), (2, 1, 0, 0, -6766, 30824), (1, 0, -1, 0, -5163, -8379), (1, 1, 0, 0, 4987, -16675), (2, -1, 1, 0, 4036, -12831), (2, 0, 2, 0, 3994, -10445), (4, 0, 0, 0, 3861, -11650), (2, 0, -3, 0, 3665, 14403), (0, 1, -2, 0, -2689, -7003), (2, 0, -1, 2, -2602, 0), (2, -1, -2, 0, 2390, 10056), (1, 0, 1, 0, -2348, 6322), (2, -2, 0, 0, 2236, -9884), (0, 1, 2, 0, -2120, 5751), (0, 2, 0, 0, -2069, 0), (2, -2, -1, 0, 2048, -4950), (2, 0, 1, -2, -1773, 4130), (2, 0, 0, 2, -1595, 0), (4, -1, -1, 0, 1215, -3958), (0, 0, 2, 2, -1110, 0), (3, 0, -1, 0, -892, 3258), (2, 1, 1, 0, -810, 2616), (4, -1, -2, 0, 759, -1897), (0, 2, -1, 0, -713, -2117), (2, 2, -1, 0, -700, 2354), (2, 1, -2, 0, 691, 0), (2, -1, 0, -2, 596, 0), (4, 0, 1, 0, 549, -1423), (0, 0, 4, 0, 537, -1117), (4, -1, 0, 0, 520, -1571), (1, 0, -2, 0, -487, -1739), (2, 1, 0, -2, -399, 0), (0, 0, 2, -2, -381, -4421), (1, 1, 1, 0, 351, 0), (3, 0, -2, 0, -340, 0), (4, 0, -3, 0, 330, 0), (2, -1, 2, 0, 327, 0), (0, 2, 1, 0, -323, 1165), (1, 1, -1, 0, 299, 0), (2, 0, 3, 0, 294, 0), (2, 0, -1, -2, 0, 8752) ) # Meeus 1998: table 47.B # D M M' F b _MOON_B = ( (0, 0, 0, 1, 5128122), (0, 0, 1, 1, 280602), (0, 0, 1, -1, 277693), (2, 0, 0, -1, 173237), (2, 0, -1, 1, 55413), (2, 0, -1, -1, 46271), (2, 0, 0, 1, 32573), (0, 0, 2, 1, 17198), (2, 0, 1, -1, 9266), (0, 0, 2, -1, 8822), (2, -1, 0, -1, 8216), (2, 0, -2, -1, 4324), (2, 0, 1, 1, 4200), (2, 1, 0, -1, -3359), (2, -1, -1, 1, 2463), (2, -1, 0, 1, 2211), (2, -1, -1, -1, 2065), (0, 1, -1, -1, -1870), (4, 0, -1, -1, 1828), (0, 1, 0, 1, -1794), (0, 0, 0, 3, -1749), (0, 1, -1, 1, -1565), (1, 0, 0, 1, -1491), (0, 1, 1, 1, -1475), (0, 1, 1, -1, -1410), (0, 1, 0, -1, -1344), (1, 0, 0, -1, -1335), (0, 0, 3, 1, 1107), (4, 0, 0, -1, 1021), (4, 0, -1, 1, 833), # second column (0, 0, 1, -3, 777), (4, 0, -2, 1, 671), (2, 0, 0, -3, 607), (2, 0, 2, -1, 596), (2, -1, 1, -1, 491), (2, 0, -2, 1, -451), (0, 0, 3, -1, 439), (2, 0, 2, 1, 422), (2, 0, -3, -1, 421), (2, 1, -1, 1, -366), (2, 1, 0, 1, -351), (4, 0, 0, 1, 331), (2, -1, 1, 1, 315), (2, -2, 0, -1, 302), (0, 0, 1, 3, -283), (2, 1, 1, -1, -229), (1, 1, 0, -1, 223), (1, 1, 0, 1, 223), (0, 1, -2, -1, -220), (2, 1, -1, -1, -220), (1, 0, 1, 1, -185), (2, -1, -2, -1, 181), (0, 1, 2, 1, -177), (4, 0, -2, -1, 176), (4, -1, -1, -1, 166), (1, 0, 1, -1, -164), (4, 0, 1, -1, 132), (1, 0, -1, -1, -119), (4, -1, 0, -1, 115), (2, -2, 0, 1, 107) ) """ Coefficients of polynomials for various terms: Lc : Mean longitude of Moon, w.r.t mean Equinox of date D : Mean elongation of the Moon M: Sun's mean anomaly Mc : Moon's mean anomaly F : Moon's argument of latitude (mean distance of Moon from its ascending node). """ _coLc = (2.18316448e+02, 4.81267881e+05, -1.57860000e-03, 1.85583502e-06, -1.53388349e-08) _coD = (2.97850192e+02, 4.45267111e+05, -1.88190000e-03, 1.83194472e-06, -8.84447000e-09) _coM = (3.57529109e+02, 3.59990503e+04, -1.53600000e-04, 4.08329931e-08) _coMc = (1.34963396e+02, 4.77198868e+05, 8.74140000e-03, 1.43474081e-05, -6.79717238e-08) _coF = (9.32720950e+01, 4.83202018e+05, -3.65390000e-03, -2.83607487e-07, 1.15833246e-09) _coA1 = (119.75, 131.849) _coA2 = (53.09, 479264.290) _coA3 = (313.45, 481266.484) _coE = (1.0, -0.002516, -0.0000074) @deprecated(since="5.0", alternative="astropy.coordinates.get_moon", message=("The private calc_moon function has been deprecated, " "as its functionality is now available in ERFA. " "Note that the coordinate system was not interpreted " "quite correctly, leading to small inaccuracies. Please " "use the public get_moon or get_body functions instead.")) def calc_moon(t): """ Lunar position model ELP2000-82 of (Chapront-Touze' and Chapront, 1983, 124, 50) This is the simplified version of Jean Meeus, Astronomical Algorithms, second edition, 1998, Willmann-Bell. Meeus claims approximate accuracy of 10" in longitude and 4" in latitude, with no specified time range. Tests against JPL ephemerides show accuracy of 10 arcseconds and 50 km over the date range CE 1950-2050. Parameters ---------- t : `~astropy.time.Time` Time of observation. Returns ------- skycoord : `~astropy.coordinates.SkyCoord` ICRS Coordinate for the body """ # number of centuries since J2000.0. # This should strictly speaking be in Ephemeris Time, but TDB or TT # will introduce error smaller than intrinsic accuracy of algorithm. T = (t.tdb.jyear-2000.0)/100. # constants that are needed for all calculations Lc = u.Quantity(polyval(T, _coLc), u.deg) D = u.Quantity(polyval(T, _coD), u.deg) M = u.Quantity(polyval(T, _coM), u.deg) Mc = u.Quantity(polyval(T, _coMc), u.deg) F = u.Quantity(polyval(T, _coF), u.deg) A1 = u.Quantity(polyval(T, _coA1), u.deg) A2 = u.Quantity(polyval(T, _coA2), u.deg) A3 = u.Quantity(polyval(T, _coA3), u.deg) E = polyval(T, _coE) suml = sumr = 0.0 for DNum, MNum, McNum, FNum, LFac, RFac in _MOON_L_R: corr = E ** abs(MNum) suml += LFac*corr*np.sin(D*DNum+M*MNum+Mc*McNum+F*FNum) sumr += RFac*corr*np.cos(D*DNum+M*MNum+Mc*McNum+F*FNum) sumb = 0.0 for DNum, MNum, McNum, FNum, BFac in _MOON_B: corr = E ** abs(MNum) sumb += BFac*corr*np.sin(D*DNum+M*MNum+Mc*McNum+F*FNum) suml += (3958*np.sin(A1) + 1962*np.sin(Lc-F) + 318*np.sin(A2)) sumb += (-2235*np.sin(Lc) + 382*np.sin(A3) + 175*np.sin(A1-F) + 175*np.sin(A1+F) + 127*np.sin(Lc-Mc) - 115*np.sin(Lc+Mc)) # ensure units suml = suml*u.microdegree sumb = sumb*u.microdegree # nutation of longitude jd1, jd2 = get_jd12(t, 'tt') nut, _ = erfa.nut06a(jd1, jd2) nut = nut*u.rad # calculate ecliptic coordinates lon = Lc + suml + nut lat = sumb dist = (385000.56+sumr/1000)*u.km # Meeus algorithm gives GeocentricTrueEcliptic coordinates ecliptic_coo = GeocentricTrueEcliptic(lon, lat, distance=dist, obstime=t, equinox=t) return SkyCoord(ecliptic_coo.transform_to(ICRS()))