# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains convenience functions for retrieving solar system ephemerides from jplephem. """ from urllib.parse import urlparse import os.path import numpy as np import erfa from .sky_coordinate import SkyCoord from astropy.utils.data import download_file from astropy.utils.decorators import classproperty, deprecated from astropy.utils.state import ScienceState from astropy.utils import indent from astropy import units as u from astropy.constants import c as speed_of_light from .representation import CartesianRepresentation, CartesianDifferential from .builtin_frames import GCRS, ICRS, ITRS, TETE from .builtin_frames.utils import get_jd12 __all__ = ["get_body", "get_moon", "get_body_barycentric", "get_body_barycentric_posvel", "solar_system_ephemeris"] DEFAULT_JPL_EPHEMERIS = 'de430' """List of kernel pairs needed to calculate positions of a given object.""" BODY_NAME_TO_KERNEL_SPEC = { 'sun': [(0, 10)], 'mercury': [(0, 1), (1, 199)], 'venus': [(0, 2), (2, 299)], 'earth-moon-barycenter': [(0, 3)], 'earth': [(0, 3), (3, 399)], 'moon': [(0, 3), (3, 301)], 'mars': [(0, 4)], 'jupiter': [(0, 5)], 'saturn': [(0, 6)], 'uranus': [(0, 7)], 'neptune': [(0, 8)], 'pluto': [(0, 9)], } """Indices to the plan94 routine for the given object.""" PLAN94_BODY_NAME_TO_PLANET_INDEX = { 'mercury': 1, 'venus': 2, 'earth-moon-barycenter': 3, 'mars': 4, 'jupiter': 5, 'saturn': 6, 'uranus': 7, 'neptune': 8, } _EPHEMERIS_NOTE = """ You can either give an explicit ephemeris or use a default, which is normally a built-in ephemeris that does not require ephemeris files. To change the default to be the JPL ephemeris:: >>> from astropy.coordinates import solar_system_ephemeris >>> solar_system_ephemeris.set('jpl') # doctest: +SKIP Use of any JPL ephemeris requires the jplephem package (https://pypi.org/project/jplephem/). If needed, the ephemeris file will be downloaded (and cached). One can check which bodies are covered by a given ephemeris using:: >>> solar_system_ephemeris.bodies ('earth', 'sun', 'moon', 'mercury', 'venus', 'earth-moon-barycenter', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune') """[1:-1] class solar_system_ephemeris(ScienceState): """Default ephemerides for calculating positions of Solar-System bodies. This can be one of the following:: - 'builtin': polynomial approximations to the orbital elements. - 'de430', 'de432s', 'de440', 'de440s': short-cuts for recent JPL dynamical models. - 'jpl': Alias for the default JPL ephemeris (currently, 'de430'). - URL: (str) The url to a SPK ephemeris in SPICE binary (.bsp) format. - PATH: (str) File path to a SPK ephemeris in SPICE binary (.bsp) format. - `None`: Ensure an Exception is raised without an explicit ephemeris. The default is 'builtin', which uses the ``epv00`` and ``plan94`` routines from the ``erfa`` implementation of the Standards Of Fundamental Astronomy library. Notes ----- Any file required will be downloaded (and cached) when the state is set. The default Satellite Planet Kernel (SPK) file from NASA JPL (de430) is ~120MB, and covers years ~1550-2650 CE [1]_. The smaller de432s file is ~10MB, and covers years 1950-2050 [2]_ (and similarly for the newer de440 and de440s). Older versions of the JPL ephemerides (such as the widely used de200) can be used via their URL [3]_. .. [1] https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de430-de431.txt .. [2] https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/aareadme_de432s.txt .. [3] https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/ """ _value = 'builtin' _kernel = None @classmethod def validate(cls, value): # make no changes if value is None if value is None: return cls._value # Set up Kernel; if the file is not in cache, this will download it. cls.get_kernel(value) return value @classmethod def get_kernel(cls, value): # ScienceState only ensures the `_value` attribute is up to date, # so we need to be sure any kernel returned is consistent. if cls._kernel is None or cls._kernel.origin != value: if cls._kernel is not None: cls._kernel.daf.file.close() cls._kernel = None kernel = _get_kernel(value) if kernel is not None: kernel.origin = value cls._kernel = kernel return cls._kernel @classproperty def kernel(cls): return cls.get_kernel(cls._value) @classproperty def bodies(cls): if cls._value is None: return None if cls._value.lower() == 'builtin': return (('earth', 'sun', 'moon') + tuple(PLAN94_BODY_NAME_TO_PLANET_INDEX.keys())) else: return tuple(BODY_NAME_TO_KERNEL_SPEC.keys()) def _get_kernel(value): """ Try importing jplephem, download/retrieve from cache the Satellite Planet Kernel corresponding to the given ephemeris. """ if value is None or value.lower() == 'builtin': return None try: from jplephem.spk import SPK except ImportError: raise ImportError("Solar system JPL ephemeris calculations require " "the jplephem package " "(https://pypi.org/project/jplephem/)") if value.lower() == 'jpl': value = DEFAULT_JPL_EPHEMERIS if value.lower() in ('de430', 'de432s', 'de440', 'de440s'): value = ('https://naif.jpl.nasa.gov/pub/naif/generic_kernels' '/spk/planets/{:s}.bsp'.format(value.lower())) elif os.path.isfile(value): return SPK.open(value) else: try: urlparse(value) except Exception: raise ValueError('{} was not one of the standard strings and ' 'could not be parsed as a file path or URL'.format(value)) return SPK.open(download_file(value, cache=True)) def _get_body_barycentric_posvel(body, time, ephemeris=None, get_velocity=True): """Calculate the barycentric position (and velocity) of a solar system body. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` get_velocity : bool, optional Whether or not to calculate the velocity as well as the position. Returns ------- position : `~astropy.coordinates.CartesianRepresentation` or tuple Barycentric (ICRS) position or tuple of position and velocity. Notes ----- Whether or not velocities are calculated makes little difference for the built-in ephemerides, but for most JPL ephemeris files, the execution time roughly doubles. """ # If the ephemeris is to be taken from solar_system_ephemeris, or the one # it already contains, use the kernel there. Otherwise, open the ephemeris, # possibly downloading it, but make sure the file is closed at the end. default_kernel = ephemeris is None or ephemeris is solar_system_ephemeris._value kernel = None try: if default_kernel: if solar_system_ephemeris.get() is None: raise ValueError(_EPHEMERIS_NOTE) kernel = solar_system_ephemeris.kernel else: kernel = _get_kernel(ephemeris) jd1, jd2 = get_jd12(time, 'tdb') if kernel is None: body = body.lower() earth_pv_helio, earth_pv_bary = erfa.epv00(jd1, jd2) if body == 'earth': body_pv_bary = earth_pv_bary elif body == 'moon': # The moon98 documentation notes that it takes TT, but that TDB leads # to errors smaller than the uncertainties in the algorithm. # moon98 returns the astrometric position relative to the Earth. moon_pv_geo = erfa.moon98(jd1, jd2) body_pv_bary = erfa.pvppv(moon_pv_geo, earth_pv_bary) else: sun_pv_bary = erfa.pvmpv(earth_pv_bary, earth_pv_helio) if body == 'sun': body_pv_bary = sun_pv_bary else: try: body_index = PLAN94_BODY_NAME_TO_PLANET_INDEX[body] except KeyError: raise KeyError("{}'s position and velocity cannot be " "calculated with the '{}' ephemeris." .format(body, ephemeris)) body_pv_helio = erfa.plan94(jd1, jd2, body_index) body_pv_bary = erfa.pvppv(body_pv_helio, sun_pv_bary) body_pos_bary = CartesianRepresentation( body_pv_bary['p'], unit=u.au, xyz_axis=-1, copy=False) if get_velocity: body_vel_bary = CartesianRepresentation( body_pv_bary['v'], unit=u.au/u.day, xyz_axis=-1, copy=False) else: if isinstance(body, str): # Look up kernel chain for JPL ephemeris, based on name try: kernel_spec = BODY_NAME_TO_KERNEL_SPEC[body.lower()] except KeyError: raise KeyError("{}'s position cannot be calculated with " "the {} ephemeris.".format(body, ephemeris)) else: # otherwise, assume the user knows what their doing and intentionally # passed in a kernel chain kernel_spec = body # jplephem cannot handle multi-D arrays, so convert to 1D here. jd1_shape = getattr(jd1, 'shape', ()) if len(jd1_shape) > 1: jd1, jd2 = jd1.ravel(), jd2.ravel() # Note that we use the new jd1.shape here to create a 1D result array. # It is reshaped below. body_posvel_bary = np.zeros((2 if get_velocity else 1, 3) + getattr(jd1, 'shape', ())) for pair in kernel_spec: spk = kernel[pair] if spk.data_type == 3: # Type 3 kernels contain both position and velocity. posvel = spk.compute(jd1, jd2) if get_velocity: body_posvel_bary += posvel.reshape(body_posvel_bary.shape) else: body_posvel_bary[0] += posvel[:4] else: # spk.generate first yields the position and then the # derivative. If no velocities are desired, body_posvel_bary # has only one element and thus the loop ends after a single # iteration, avoiding the velocity calculation. for body_p_or_v, p_or_v in zip(body_posvel_bary, spk.generate(jd1, jd2)): body_p_or_v += p_or_v body_posvel_bary.shape = body_posvel_bary.shape[:2] + jd1_shape body_pos_bary = CartesianRepresentation(body_posvel_bary[0], unit=u.km, copy=False) if get_velocity: body_vel_bary = CartesianRepresentation(body_posvel_bary[1], unit=u.km/u.day, copy=False) return (body_pos_bary, body_vel_bary) if get_velocity else body_pos_bary finally: if not default_kernel and kernel is not None: kernel.daf.file.close() def get_body_barycentric_posvel(body, time, ephemeris=None): """Calculate the barycentric position and velocity of a solar system body. Parameters ---------- body : str or list of tuple The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` Returns ------- position, velocity : tuple of `~astropy.coordinates.CartesianRepresentation` Tuple of barycentric (ICRS) position and velocity. See Also -------- get_body_barycentric : to calculate position only. This is faster by about a factor two for JPL kernels, but has no speed advantage for the built-in ephemeris. Notes ----- {_EPHEMERIS_NOTE} """ return _get_body_barycentric_posvel(body, time, ephemeris) def get_body_barycentric(body, time, ephemeris=None): """Calculate the barycentric position of a solar system body. Parameters ---------- body : str or list of tuple The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` Returns ------- position : `~astropy.coordinates.CartesianRepresentation` Barycentric (ICRS) position of the body in cartesian coordinates See Also -------- get_body_barycentric_posvel : to calculate both position and velocity. Notes ----- {_EPHEMERIS_NOTE} """ return _get_body_barycentric_posvel(body, time, ephemeris, get_velocity=False) def _get_apparent_body_position(body, time, ephemeris, obsgeoloc=None): """Calculate the apparent position of body ``body`` relative to Earth. This corrects for the light-travel time to the object. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``~astropy.coordinates.solar_system_ephemeris.set`` obsgeoloc : `~astropy.coordinates.CartesianRepresentation`, optional The GCRS position of the observer Returns ------- cartesian_position : `~astropy.coordinates.CartesianRepresentation` Barycentric (ICRS) apparent position of the body in cartesian coordinates Notes ----- {_EPHEMERIS_NOTE} """ if ephemeris is None: ephemeris = solar_system_ephemeris.get() # Calculate position given approximate light travel time. delta_light_travel_time = 20. * u.s emitted_time = time light_travel_time = 0. * u.s earth_loc = get_body_barycentric('earth', time, ephemeris) if obsgeoloc is not None: earth_loc += obsgeoloc while np.any(np.fabs(delta_light_travel_time) > 1.0e-8*u.s): body_loc = get_body_barycentric(body, emitted_time, ephemeris) earth_distance = (body_loc - earth_loc).norm() delta_light_travel_time = (light_travel_time - earth_distance/speed_of_light) light_travel_time = earth_distance/speed_of_light emitted_time = time - light_travel_time return get_body_barycentric(body, emitted_time, ephemeris) def get_body(body, time, location=None, ephemeris=None): """ Get a `~astropy.coordinates.SkyCoord` for a solar system body as observed from a location on Earth in the `~astropy.coordinates.GCRS` reference system. Parameters ---------- body : str or list of tuple The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. location : `~astropy.coordinates.EarthLocation`, optional Location of observer on the Earth. If not given, will be taken from ``time`` (if not present, a geocentric observer will be assumed). ephemeris : str, optional Ephemeris to use. If not given, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` (which is set to 'builtin' by default). Returns ------- skycoord : `~astropy.coordinates.SkyCoord` GCRS Coordinate for the body Notes ----- The coordinate returned is the apparent position, which is the position of the body at time *t* minus the light travel time from the *body* to the observing *location*. {_EPHEMERIS_NOTE} """ if location is None: location = time.location if location is not None: obsgeoloc, obsgeovel = location.get_gcrs_posvel(time) else: obsgeoloc, obsgeovel = None, None cartrep = _get_apparent_body_position(body, time, ephemeris, obsgeoloc) icrs = ICRS(cartrep) gcrs = icrs.transform_to(GCRS(obstime=time, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel)) return SkyCoord(gcrs) def get_moon(time, location=None, ephemeris=None): """ Get a `~astropy.coordinates.SkyCoord` for the Earth's Moon as observed from a location on Earth in the `~astropy.coordinates.GCRS` reference system. Parameters ---------- time : `~astropy.time.Time` Time of observation location : `~astropy.coordinates.EarthLocation` Location of observer on the Earth. If none is supplied, taken from ``time`` (if not present, a geocentric observer will be assumed). ephemeris : str, optional Ephemeris to use. If not given, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` (which is set to 'builtin' by default). Returns ------- skycoord : `~astropy.coordinates.SkyCoord` GCRS Coordinate for the Moon Notes ----- The coordinate returned is the apparent position, which is the position of the moon at time *t* minus the light travel time from the moon to the observing *location*. {_EPHEMERIS_NOTE} """ return get_body('moon', time, location=location, ephemeris=ephemeris) # Add note about the ephemeris choices to the docstrings of relevant functions. # Note: sadly, one cannot use f-strings for docstrings, so we format explicitly. for f in [f for f in locals().values() if callable(f) and f.__doc__ is not None and '{_EPHEMERIS_NOTE}' in f.__doc__]: f.__doc__ = f.__doc__.format(_EPHEMERIS_NOTE=indent(_EPHEMERIS_NOTE)[4:]) deprecation_msg = """ The use of _apparent_position_in_true_coordinates is deprecated because astropy now implements a True Equator True Equinox Frame (TETE), which should be used instead. """ @deprecated('4.2', deprecation_msg) def _apparent_position_in_true_coordinates(skycoord): """ Convert Skycoord in GCRS frame into one in which RA and Dec are defined w.r.t to the true equinox and poles of the Earth """ location = getattr(skycoord, 'location', None) if location is None: gcrs_rep = skycoord.obsgeoloc.with_differentials( {'s': CartesianDifferential.from_cartesian(skycoord.obsgeovel)}) location = (GCRS(gcrs_rep, obstime=skycoord.obstime) .transform_to(ITRS(obstime=skycoord.obstime)) .earth_location) tete_frame = TETE(obstime=skycoord.obstime, location=location) return skycoord.transform_to(tete_frame)