# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings from abc import abstractmethod from math import acos, cos, exp, floor, inf, log, pi, sin, sqrt from numbers import Number import numpy as np import astropy.constants as const import astropy.units as u from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.utils.decorators import lazyproperty from astropy.utils.exceptions import AstropyUserWarning from . import scalar_inv_efuncs from . import units as cu from .core import Cosmology, FlatCosmologyMixin, Parameter from .parameter import _validate_non_negative, _validate_with_unit from .utils import aszarr, vectorize_redshift_method # isort: split if HAS_SCIPY: from scipy.integrate import quad from scipy.special import ellipkinc, hyp2f1 else: def quad(*args, **kwargs): raise ModuleNotFoundError("No module named 'scipy.integrate'") def ellipkinc(*args, **kwargs): raise ModuleNotFoundError("No module named 'scipy.special'") def hyp2f1(*args, **kwargs): raise ModuleNotFoundError("No module named 'scipy.special'") __all__ = ["FLRW", "LambdaCDM", "FlatLambdaCDM", "wCDM", "FlatwCDM", "w0waCDM", "Flatw0waCDM", "wpwaCDM", "w0wzCDM", "FlatFLRWMixin"] __doctest_requires__ = {'*': ['scipy']} # Some conversion constants -- useful to compute them once here and reuse in # the initialization rather than have every object do them. H0units_to_invs = (u.km / (u.s * u.Mpc)).to(1.0 / u.s) sec_to_Gyr = u.s.to(u.Gyr) # const in critical density in cgs units (g cm^-3) critdens_const = (3 / (8 * pi * const.G)).cgs.value arcsec_in_radians = pi / (3600. * 180) arcmin_in_radians = pi / (60. * 180) # Radiation parameter over c^2 in cgs (g cm^-3 K^-4) a_B_c2 = (4 * const.sigma_sb / const.c ** 3).cgs.value # Boltzmann constant in eV / K kB_evK = const.k_B.to(u.eV / u.K) class FLRW(Cosmology): """ A class describing an isotropic and homogeneous (Friedmann-Lemaitre-Robertson-Walker) cosmology. This is an abstract base class -- you cannot instantiate examples of this class, but must work with one of its subclasses, such as :class:`~astropy.cosmology.LambdaCDM` or :class:`~astropy.cosmology.wCDM`. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Note that this does not include massive neutrinos. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Notes ----- Class instances are immutable -- you cannot change the parameters' values. That is, all of the above attributes (except meta) are read only. For details on how to create performant custom subclasses, see the documentation on :ref:`astropy-cosmology-fast-integrals`. """ H0 = Parameter(doc="Hubble constant as an `~astropy.units.Quantity` at z=0.", unit="km/(s Mpc)", fvalidate="scalar") Om0 = Parameter(doc="Omega matter; matter density/critical density at z=0.", fvalidate="non-negative") Ode0 = Parameter(doc="Omega dark energy; dark energy density/critical density at z=0.", fvalidate="float") Tcmb0 = Parameter(doc="Temperature of the CMB as `~astropy.units.Quantity` at z=0.", unit="Kelvin", fmt="0.4g", fvalidate="scalar") Neff = Parameter(doc="Number of effective neutrino species.", fvalidate="non-negative") m_nu = Parameter(doc="Mass of neutrino species.", unit="eV", equivalencies=u.mass_energy(), fmt="") Ob0 = Parameter(doc="Omega baryon; baryonic matter density/critical density at z=0.") def __init__(self, H0, Om0, Ode0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(name=name, meta=meta) # Assign (and validate) Parameters self.H0 = H0 self.Om0 = Om0 self.Ode0 = Ode0 self.Tcmb0 = Tcmb0 self.Neff = Neff self.m_nu = m_nu # (reset later, this is just for unit validation) self.Ob0 = Ob0 # (must be after Om0) # Derived quantities self._Odm0 = None if Ob0 is None else (self._Om0 - self._Ob0) # 100 km/s/Mpc * h = H0 (so h is dimensionless) self._h = self._H0.value / 100. # Hubble distance self._hubble_distance = (const.c / self._H0).to(u.Mpc) # H0 in s^-1; don't use units for speed H0_s = self._H0.value * H0units_to_invs # Hubble time; again, avoiding units package for speed self._hubble_time = u.Quantity(sec_to_Gyr / H0_s, u.Gyr) # critical density at z=0 (grams per cubic cm) cd0value = critdens_const * H0_s ** 2 self._critical_density0 = u.Quantity(cd0value, u.g / u.cm ** 3) # ------------------- # neutrinos # Load up neutrino masses. self._nneutrinos = floor(self._Neff) # We are going to share Neff between the neutrinos equally. # In detail this is not correct, but it is a standard assumption # because properly calculating it is a) complicated b) depends # on the details of the massive neutrinos (e.g., their weak # interactions, which could be unusual if one is considering sterile # neutrinos) self._massivenu = False if self._nneutrinos > 0 and self._Tcmb0.value > 0: self._neff_per_nu = self._Neff / self._nneutrinos # Now, figure out if we have massive neutrinos to deal with, # and, if so, get the right number of masses # It is worth the effort to keep track of massless ones separately # (since they are quite easy to deal with, and a common use case # is to set only one neutrino to have mass) m_nu = self._m_nu if m_nu.isscalar: # Assume all neutrinos have the same mass if m_nu.value == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True self._nmasslessnu = 0 self._nmassivenu = self._nneutrinos self._massivenu_mass = (m_nu.value * np.ones(self._nneutrinos)) else: # Make sure we have the right number of masses # -unless- they are massless, in which case we cheat a little if m_nu.value.min() < 0: raise ValueError("Invalid (negative) neutrino mass" " encountered") if m_nu.value.max() == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True if len(m_nu) != self._nneutrinos: errstr = "Unexpected number of neutrino masses" raise ValueError(errstr) # Segregate out the massless ones self._nmasslessnu = len(np.nonzero(m_nu.value == 0)[0]) self._nmassivenu = self._nneutrinos - self._nmasslessnu w = np.nonzero(m_nu.value > 0)[0] self._massivenu_mass = m_nu[w] # Compute photon density, Tcmb, neutrino parameters # Tcmb0=0 removes both photons and neutrinos, is handled # as a special case for efficiency if self._Tcmb0.value > 0: # Compute photon density from Tcmb self._Ogamma0 = a_B_c2 * self._Tcmb0.value ** 4 / self._critical_density0.value # Compute Neutrino temperature # The constant in front is (4/11)^1/3 -- see any # cosmology book for an explanation -- for example, # Weinberg 'Cosmology' p 154 eq (3.1.21) self._Tnu0 = 0.7137658555036082 * self._Tcmb0 # Compute Neutrino Omega and total relativistic component # for massive neutrinos. We also store a list version, # since that is more efficient to do integrals with (perhaps # surprisingly! But small python lists are more efficient # than small numpy arrays). if self._massivenu: nu_y = self._massivenu_mass / (kB_evK * self._Tnu0) self._nu_y = nu_y.value self._nu_y_list = self._nu_y.tolist() self._Onu0 = self._Ogamma0 * self.nu_relative_density(0) else: # This case is particularly simple, so do it directly # The 0.2271... is 7/8 (4/11)^(4/3) -- the temperature # bit ^4 (blackbody energy density) times 7/8 for # FD vs. BE statistics. self._Onu0 = 0.22710731766 * self._Neff * self._Ogamma0 else: self._Ogamma0 = 0.0 self._Tnu0 = 0.0 * u.K self._Onu0 = 0.0 # now set m_nu Parameter if self._nneutrinos == 0 or self._Tnu0.value == 0: self._m_nu = None else: if not self._massivenu: # only massless m = np.zeros(self._nmasslessnu) elif self._nmasslessnu == 0: # only massive m = self._massivenu_mass else: # a mix -- the most complicated case m = np.append(np.zeros(self._nmasslessnu), self._massivenu_mass.value) self._m_nu = m << self._m_nu.unit # ------------------- # Compute curvature density self._Ok0 = 1.0 - self._Om0 - self._Ode0 - self._Ogamma0 - self._Onu0 # Subclasses should override this reference if they provide # more efficient scalar versions of inv_efunc. self._inv_efunc_scalar = self.inv_efunc self._inv_efunc_scalar_args = () # --------------------------------------------------------------- # Parameter details @Ob0.validator def Ob0(self, param, value): """Validate baryon density to None or positive float > matter density.""" if value is None: return value value = _validate_non_negative(self, param, value) if value > self.Om0: raise ValueError("baryonic density can not be larger than total matter density.") return value # --------------------------------------------------------------- # properties @property def Odm0(self): """Omega dark matter; dark matter density/critical density at z=0.""" return self._Odm0 @property def Ok0(self): """Omega curvature; the effective curvature density/critical density at z=0.""" return self._Ok0 @property def Tnu0(self): """Temperature of the neutrino background as `~astropy.units.Quantity` at z=0.""" return self._Tnu0 @property def has_massive_nu(self): """Does this cosmology have at least one massive neutrino species?""" if self._Tnu0.value == 0: return False return self._massivenu @property def h(self): """Dimensionless Hubble constant: h = H_0 / 100 [km/sec/Mpc].""" return self._h @property def hubble_time(self): """Hubble time as `~astropy.units.Quantity`.""" return self._hubble_time @property def hubble_distance(self): """Hubble distance as `~astropy.units.Quantity`.""" return self._hubble_distance @property def critical_density0(self): """Critical density as `~astropy.units.Quantity` at z=0.""" return self._critical_density0 @property def Ogamma0(self): """Omega gamma; the density/critical density of photons at z=0.""" return self._Ogamma0 @property def Onu0(self): """Omega nu; the density/critical density of neutrinos at z=0.""" return self._Onu0 # --------------------------------------------------------------- @abstractmethod def w(self, z): r"""The dark energy equation of state. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state. `float` if scalar input. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. This must be overridden by subclasses. """ raise NotImplementedError("w(z) is not implemented") def Om(self, z): """ Return the density parameter for non-relativistic matter at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Om : ndarray or float The density of non-relativistic matter relative to the critical density at each redshift. Returns `float` if the input is scalar. Notes ----- This does not include neutrinos, even if non-relativistic at the redshift of interest; see `Onu`. """ z = aszarr(z) return self._Om0 * (z + 1.0) ** 3 * self.inv_efunc(z) ** 2 def Ob(self, z): """Return the density parameter for baryonic matter at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Ob : ndarray or float The density of baryonic matter relative to the critical density at each redshift. Returns `float` if the input is scalar. Raises ------ ValueError If ``Ob0`` is `None`. """ if self._Ob0 is None: raise ValueError("Baryon density not set for this cosmology") z = aszarr(z) return self._Ob0 * (z + 1.0) ** 3 * self.inv_efunc(z) ** 2 def Odm(self, z): """Return the density parameter for dark matter at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Odm : ndarray or float The density of non-relativistic dark matter relative to the critical density at each redshift. Returns `float` if the input is scalar. Raises ------ ValueError If ``Ob0`` is `None`. Notes ----- This does not include neutrinos, even if non-relativistic at the redshift of interest. """ if self._Odm0 is None: raise ValueError("Baryonic density not set for this cosmology, " "unclear meaning of dark matter density") z = aszarr(z) return self._Odm0 * (z + 1.0) ** 3 * self.inv_efunc(z) ** 2 def Ok(self, z): """ Return the equivalent density parameter for curvature at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Ok : ndarray or float The equivalent density parameter for curvature at each redshift. Returns `float` if the input is scalar. """ z = aszarr(z) if self._Ok0 == 0: # Common enough to be worth checking explicitly return np.zeros(z.shape) if hasattr(z, "shape") else 0.0 return self._Ok0 * (z + 1.0) ** 2 * self.inv_efunc(z) ** 2 def Ode(self, z): """Return the density parameter for dark energy at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Ode : ndarray or float The density of non-relativistic matter relative to the critical density at each redshift. Returns `float` if the input is scalar. """ z = aszarr(z) if self._Ode0 == 0: # Common enough to be worth checking explicitly return np.zeros(z.shape) if hasattr(z, "shape") else 0.0 return self._Ode0 * self.de_density_scale(z) * self.inv_efunc(z) ** 2 def Ogamma(self, z): """Return the density parameter for photons at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Ogamma : ndarray or float The energy density of photons relative to the critical density at each redshift. Returns `float` if the input is scalar. """ z = aszarr(z) return self._Ogamma0 * (z + 1.0) ** 4 * self.inv_efunc(z) ** 2 def Onu(self, z): r"""Return the density parameter for neutrinos at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Onu : ndarray or float The energy density of neutrinos relative to the critical density at each redshift. Note that this includes their kinetic energy (if they have mass), so it is not equal to the commonly used :math:`\sum \frac{m_{\nu}}{94 eV}`, which does not include kinetic energy. Returns `float` if the input is scalar. """ z = aszarr(z) if self._Onu0 == 0: # Common enough to be worth checking explicitly return np.zeros(z.shape) if hasattr(z, "shape") else 0.0 return self.Ogamma(z) * self.nu_relative_density(z) def Tcmb(self, z): """Return the CMB temperature at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Tcmb : `~astropy.units.Quantity` ['temperature'] The temperature of the CMB in K. """ return self._Tcmb0 * (aszarr(z) + 1.0) def Tnu(self, z): """Return the neutrino temperature at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- Tnu : `~astropy.units.Quantity` ['temperature'] The temperature of the cosmic neutrino background in K. """ return self._Tnu0 * (aszarr(z) + 1.0) def nu_relative_density(self, z): r"""Neutrino density function relative to the energy density in photons. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- f : ndarray or float The neutrino density scaling factor relative to the density in photons at each redshift. Only returns `float` if z is scalar. Notes ----- The density in neutrinos is given by .. math:: \rho_{\nu} \left(a\right) = 0.2271 \, N_{eff} \, f\left(m_{\nu} a / T_{\nu 0} \right) \, \rho_{\gamma} \left( a \right) where .. math:: f \left(y\right) = \frac{120}{7 \pi^4} \int_0^{\infty} \, dx \frac{x^2 \sqrt{x^2 + y^2}} {e^x + 1} assuming that all neutrino species have the same mass. If they have different masses, a similar term is calculated for each one. Note that ``f`` has the asymptotic behavior :math:`f(0) = 1`. This method returns :math:`0.2271 f` using an analytical fitting formula given in Komatsu et al. 2011, ApJS 192, 18. """ # Note that there is also a scalar-z-only cython implementation of # this in scalar_inv_efuncs.pyx, so if you find a problem in this # you need to update there too. # See Komatsu et al. 2011, eq 26 and the surrounding discussion # for an explanation of what we are doing here. # However, this is modified to handle multiple neutrino masses # by computing the above for each mass, then summing prefac = 0.22710731766 # 7/8 (4/11)^4/3 -- see any cosmo book # The massive and massless contribution must be handled separately # But check for common cases first z = aszarr(z) if not self._massivenu: return prefac * self._Neff * (np.ones(z.shape) if hasattr(z, "shape") else 1.0) # These are purely fitting constants -- see the Komatsu paper p = 1.83 invp = 0.54644808743 # 1.0 / p k = 0.3173 curr_nu_y = self._nu_y / (1. + np.expand_dims(z, axis=-1)) rel_mass_per = (1.0 + (k * curr_nu_y) ** p) ** invp rel_mass = rel_mass_per.sum(-1) + self._nmasslessnu return prefac * self._neff_per_nu * rel_mass def _w_integrand(self, ln1pz): """Internal convenience function for w(z) integral (eq. 5 of [1]_). Parameters ---------- ln1pz : `~numbers.Number` or scalar ndarray Assumes scalar input, since this should only be called inside an integral. References ---------- .. [1] Linder, E. (2003). Exploring the Expansion History of the Universe. Phys. Rev. Lett., 90, 091301. """ return 1.0 + self.w(exp(ln1pz) - 1.0) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and is given by .. math:: I = \exp \left( 3 \int_{a}^1 \frac{ da^{\prime} }{ a^{\prime} } \left[ 1 + w\left( a^{\prime} \right) \right] \right) The actual integral used is rewritten from [1]_ to be in terms of z. It will generally helpful for subclasses to overload this method if the integral can be done analytically for the particular dark energy equation of state that they implement. References ---------- .. [1] Linder, E. (2003). Exploring the Expansion History of the Universe. Phys. Rev. Lett., 90, 091301. """ # This allows for an arbitrary w(z) following eq (5) of # Linder 2003, PRL 90, 91301. The code here evaluates # the integral numerically. However, most popular # forms of w(z) are designed to make this integral analytic, # so it is probably a good idea for subclasses to overload this # method if an analytic form is available. z = aszarr(z) if not isinstance(z, (Number, np.generic)): # array/Quantity ival = np.array([quad(self._w_integrand, 0, log(1 + redshift))[0] for redshift in z]) return np.exp(3 * ival) else: # scalar ival = quad(self._w_integrand, 0, log(z + 1.0))[0] return exp(3 * ival) def efunc(self, z): """Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. Notes ----- It is not necessary to override this method, but if de_density_scale takes a particularly simple form, it may be advantageous to. """ if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return np.sqrt(zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0 * self.de_density_scale(z)) def inv_efunc(self, z): """Inverse of ``efunc``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the inverse Hubble constant. Returns `float` if the input is scalar. """ # Avoid the function overhead by repeating code if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return (zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0 * self.de_density_scale(z))**(-0.5) def _lookback_time_integrand_scalar(self, z): """Integrand of the lookback time (equation 30 of [1]_). Parameters ---------- z : float Input redshift. Returns ------- I : float The integrand for the lookback time. References ---------- .. [1] Hogg, D. (1999). Distance measures in cosmology, section 11. arXiv e-prints, astro-ph/9905116. """ return self._inv_efunc_scalar(z, *self._inv_efunc_scalar_args) / (z + 1.0) def lookback_time_integrand(self, z): """Integrand of the lookback time (equation 30 of [1]_). Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : float or array The integrand for the lookback time. References ---------- .. [1] Hogg, D. (1999). Distance measures in cosmology, section 11. arXiv e-prints, astro-ph/9905116. """ z = aszarr(z) return self.inv_efunc(z) / (z + 1.0) def _abs_distance_integrand_scalar(self, z): """Integrand of the absorption distance [1]_. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- X : float The integrand for the absorption distance. References ---------- .. [1] Hogg, D. (1999). Distance measures in cosmology, section 11. arXiv e-prints, astro-ph/9905116. """ args = self._inv_efunc_scalar_args return (z + 1.0) ** 2 * self._inv_efunc_scalar(z, *args) def abs_distance_integrand(self, z): """Integrand of the absorption distance [1]_. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- X : float or array The integrand for the absorption distance. References ---------- .. [1] Hogg, D. (1999). Distance measures in cosmology, section 11. arXiv e-prints, astro-ph/9905116. """ z = aszarr(z) return (z + 1.0) ** 2 * self.inv_efunc(z) def H(self, z): """Hubble parameter (km/s/Mpc) at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- H : `~astropy.units.Quantity` ['frequency'] Hubble parameter at each input redshift. """ return self._H0 * self.efunc(z) def scale_factor(self, z): """Scale factor at redshift ``z``. The scale factor is defined as :math:`a = 1 / (1 + z)`. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- a : ndarray or float Scale factor at each input redshift. Returns `float` if the input is scalar. """ return 1.0 / (aszarr(z) + 1.0) def lookback_time(self, z): """Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] Lookback time in Gyr to each input redshift. See Also -------- z_at_value : Find the redshift corresponding to a lookback time. """ return self._lookback_time(z) def _lookback_time(self, z): """Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] Lookback time in Gyr to each input redshift. """ return self._hubble_time * self._integral_lookback_time(z) @vectorize_redshift_method def _integral_lookback_time(self, z, /): """Lookback time to redshift ``z``. Value in units of Hubble time. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : float or ndarray Lookback time to each input redshift in Hubble time units. Returns `float` if input scalar, `~numpy.ndarray` otherwise. """ return quad(self._lookback_time_integrand_scalar, 0, z)[0] def lookback_distance(self, z): """ The lookback distance is the light travel time distance to a given redshift. It is simply c * lookback_time. It may be used to calculate the proper distance between two redshifts, e.g. for the mean free path to ionizing radiation. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] Lookback distance in Mpc """ return (self.lookback_time(z) * const.c).to(u.Mpc) def age(self, z): """Age of the universe in Gyr at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] The age of the universe in Gyr at each input redshift. See Also -------- z_at_value : Find the redshift corresponding to an age. """ return self._age(z) def _age(self, z): """Age of the universe in Gyr at redshift ``z``. This internal function exists to be re-defined for optimizations. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] The age of the universe in Gyr at each input redshift. """ return self._hubble_time * self._integral_age(z) @vectorize_redshift_method def _integral_age(self, z, /): """Age of the universe at redshift ``z``. Value in units of Hubble time. Calculated using explicit integration. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : float or ndarray The age of the universe at each input redshift in Hubble time units. Returns `float` if input scalar, `~numpy.ndarray` otherwise. See Also -------- z_at_value : Find the redshift corresponding to an age. """ return quad(self._lookback_time_integrand_scalar, z, np.inf)[0] def critical_density(self, z): """Critical density in grams per cubic cm at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- rho : `~astropy.units.Quantity` Critical density in g/cm^3 at each input redshift. """ return self._critical_density0 * (self.efunc(z)) ** 2 def comoving_distance(self, z): """Comoving line-of-sight distance in Mpc at a given redshift. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc to each input redshift. """ return self._comoving_distance_z1z2(0, z) def _comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts ``z1`` and ``z2``. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. """ return self._integral_comoving_distance_z1z2(z1, z2) @vectorize_redshift_method(nin=2) def _integral_comoving_distance_z1z2_scalar(self, z1, z2, /): """ Comoving line-of-sight distance between objects at redshifts ``z1`` and ``z2``. Value in Mpc. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Returns ------- d : float or ndarray Comoving distance in Mpc between each input redshift. Returns `float` if input scalar, `~numpy.ndarray` otherwise. """ return quad(self._inv_efunc_scalar, z1, z2, args=self._inv_efunc_scalar_args)[0] def _integral_comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts ``z1`` and ``z2``. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z1, z2 : Quantity-like ['redshift'] or array-like Input redshifts. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. """ return self._hubble_distance * self._integral_comoving_distance_z1z2_scalar(z1, z2) def comoving_transverse_distance(self, z): r"""Comoving transverse distance in Mpc at a given redshift. This value is the transverse comoving distance at redshift ``z`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if :math:`\Omega_k` is zero (as in the current concordance Lambda-CDM model). Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving transverse distance in Mpc at each input redshift. Notes ----- This quantity is also called the 'proper motion distance' in some texts. """ return self._comoving_transverse_distance_z1z2(0, z) def _comoving_transverse_distance_z1z2(self, z1, z2): r"""Comoving transverse distance in Mpc between two redshifts. This value is the transverse comoving distance at redshift ``z2`` as seen from redshift ``z1`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if :math:`\Omega_k` is zero (as in the current concordance Lambda-CDM model). Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving transverse distance in Mpc between input redshift. Notes ----- This quantity is also called the 'proper motion distance' in some texts. """ Ok0 = self._Ok0 dc = self._comoving_distance_z1z2(z1, z2) if Ok0 == 0: return dc sqrtOk0 = sqrt(abs(Ok0)) dh = self._hubble_distance if Ok0 > 0: return dh / sqrtOk0 * np.sinh(sqrtOk0 * dc.value / dh.value) else: return dh / sqrtOk0 * np.sin(sqrtOk0 * dc.value / dh.value) def angular_diameter_distance(self, z): """Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift ``z`` ([1]_, [2]_, [3]_). Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] Angular diameter distance in Mpc at each input redshift. References ---------- .. [1] Weinberg, 1972, pp 420-424; Weedman, 1986, pp 421-424. .. [2] Weedman, D. (1986). Quasar astronomy, pp 65-67. .. [3] Peebles, P. (1993). Principles of Physical Cosmology, pp 325-327. """ z = aszarr(z) return self.comoving_transverse_distance(z) / (z + 1.0) def luminosity_distance(self, z): """Luminosity distance in Mpc at redshift ``z``. This is the distance to use when converting between the bolometric flux from an object at redshift ``z`` and its bolometric luminosity [1]_. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] Luminosity distance in Mpc at each input redshift. See Also -------- z_at_value : Find the redshift corresponding to a luminosity distance. References ---------- .. [1] Weinberg, 1972, pp 420-424; Weedman, 1986, pp 60-62. """ z = aszarr(z) return (z + 1.0) * self.comoving_transverse_distance(z) def angular_diameter_distance_z1z2(self, z1, z2): """Angular diameter distance between objects at 2 redshifts. Useful for gravitational lensing, for example computing the angular diameter distance between a lensed galaxy and the foreground lens. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. For most practical applications such as gravitational lensing, ``z2`` should be larger than ``z1``. The method will work for ``z2 < z1``; however, this will return negative distances. Returns ------- d : `~astropy.units.Quantity` The angular diameter distance between each input redshift pair. Returns scalar if input is scalar, array else-wise. """ z1, z2 = aszarr(z1), aszarr(z2) if np.any(z2 < z1): warnings.warn(f"Second redshift(s) z2 ({z2}) is less than first " f"redshift(s) z1 ({z1}).", AstropyUserWarning) return self._comoving_transverse_distance_z1z2(z1, z2) / (z2 + 1.0) @vectorize_redshift_method def absorption_distance(self, z, /): """Absorption distance at redshift ``z``. This is used to calculate the number of objects with some cross section of absorption and number density intersecting a sightline per unit redshift path ([1]_, [2]_). Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : float or ndarray Absorption distance (dimensionless) at each input redshift. Returns `float` if input scalar, `~numpy.ndarray` otherwise. References ---------- .. [1] Hogg, D. (1999). Distance measures in cosmology, section 11. arXiv e-prints, astro-ph/9905116. .. [2] Bahcall, John N. and Peebles, P.J.E. 1969, ApJ, 156L, 7B """ return quad(self._abs_distance_integrand_scalar, 0, z)[0] def distmod(self, z): """Distance modulus at redshift ``z``. The distance modulus is defined as the (apparent magnitude - absolute magnitude) for an object at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- distmod : `~astropy.units.Quantity` ['length'] Distance modulus at each input redshift, in magnitudes. See Also -------- z_at_value : Find the redshift corresponding to a distance modulus. """ # Remember that the luminosity distance is in Mpc # Abs is necessary because in certain obscure closed cosmologies # the distance modulus can be negative -- which is okay because # it enters as the square. val = 5. * np.log10(abs(self.luminosity_distance(z).value)) + 25.0 return u.Quantity(val, u.mag) def comoving_volume(self, z): r"""Comoving volume in cubic Mpc at redshift ``z``. This is the volume of the universe encompassed by redshifts less than ``z``. For the case of :math:`\Omega_k = 0` it is a sphere of radius `comoving_distance` but it is less intuitive if :math:`\Omega_k` is not. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- V : `~astropy.units.Quantity` Comoving volume in :math:`Mpc^3` at each input redshift. """ Ok0 = self._Ok0 if Ok0 == 0: return 4. / 3. * pi * self.comoving_distance(z) ** 3 dh = self._hubble_distance.value # .value for speed dm = self.comoving_transverse_distance(z).value term1 = 4. * pi * dh ** 3 / (2. * Ok0) * u.Mpc ** 3 term2 = dm / dh * np.sqrt(1 + Ok0 * (dm / dh) ** 2) term3 = sqrt(abs(Ok0)) * dm / dh if Ok0 > 0: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsinh(term3)) else: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsin(term3)) def differential_comoving_volume(self, z): """Differential comoving volume at redshift z. Useful for calculating the effective comoving volume. For example, allows for integration over a comoving volume that has a sensitivity function that changes with redshift. The total comoving volume is given by integrating ``differential_comoving_volume`` to redshift ``z`` and multiplying by a solid angle. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- dV : `~astropy.units.Quantity` Differential comoving volume per redshift per steradian at each input redshift. """ dm = self.comoving_transverse_distance(z) return self._hubble_distance * (dm ** 2.0) / (self.efunc(z) << u.steradian) def kpc_comoving_per_arcmin(self, z): """ Separation in transverse comoving kpc corresponding to an arcminute at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] The distance in comoving kpc corresponding to an arcmin at each input redshift. """ return (self.comoving_transverse_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin) def kpc_proper_per_arcmin(self, z): """ Separation in transverse proper kpc corresponding to an arcminute at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- d : `~astropy.units.Quantity` ['length'] The distance in proper kpc corresponding to an arcmin at each input redshift. """ return (self.angular_diameter_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin) def arcsec_per_kpc_comoving(self, z): """ Angular separation in arcsec corresponding to a comoving kpc at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- theta : `~astropy.units.Quantity` ['angle'] The angular separation in arcsec corresponding to a comoving kpc at each input redshift. """ return u.arcsec / (self.comoving_transverse_distance(z).to(u.kpc) * arcsec_in_radians) def arcsec_per_kpc_proper(self, z): """ Angular separation in arcsec corresponding to a proper kpc at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- theta : `~astropy.units.Quantity` ['angle'] The angular separation in arcsec corresponding to a proper kpc at each input redshift. """ return u.arcsec / (self.angular_diameter_distance(z).to(u.kpc) * arcsec_in_radians) class FlatFLRWMixin(FlatCosmologyMixin): """ Mixin class for flat FLRW cosmologies. Do NOT instantiate directly. Must precede the base class in the multiple-inheritance so that this mixin's ``__init__`` proceeds the base class'. Note that all instances of ``FlatFLRWMixin`` are flat, but not all flat cosmologies are instances of ``FlatFLRWMixin``. As example, ``LambdaCDM`` **may** be flat (for the a specific set of parameter values), but ``FlatLambdaCDM`` **will** be flat. """ Ode0 = Parameter(doc="Omega dark energy; dark energy density/critical density at z=0.", derived=True) # no longer a Parameter def __init_subclass__(cls): super().__init_subclass__() if "Ode0" in cls._init_signature.parameters: raise TypeError("subclasses of `FlatFLRWMixin` cannot have `Ode0` in `__init__`") def __init__(self, *args, **kw): super().__init__(*args, **kw) # guaranteed not to have `Ode0` # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0 def __equiv__(self, other): """flat-FLRW equivalence. Use ``.is_equivalent()`` for actual check! Parameters ---------- other : `~astropy.cosmology.FLRW` subclass instance The object in which to compare. Returns ------- bool or `NotImplemented` `True` if 'other' is of the same class / non-flat class (e.g. ``FlatLambdaCDM`` and ``LambdaCDM``) has matching parameters and parameter values. `False` if 'other' is of the same class but has different parameters. `NotImplemented` otherwise. """ # check if case (1): same class & parameters if isinstance(other, FlatFLRWMixin): return super().__equiv__(other) # check cases (3, 4), if other is the non-flat version of this class # this makes the assumption that any further subclass of a flat cosmo # keeps the same physics. comparable_classes = [c for c in self.__class__.mro()[1:] if (issubclass(c, FLRW) and c is not FLRW)] if other.__class__ not in comparable_classes: return NotImplemented # check if have equivalent parameters # check all parameters in other match those in 'self' and 'other' has # no extra parameters (case (2)) except for 'Ode0' and that other params_eq = ( set(self.__all_parameters__) == set(other.__all_parameters__) # no extra params and all(np.all(getattr(self, k) == getattr(other, k)) # params equal for k in self.__all_parameters__) # flatness conditions and other.Ok0 == 0.0 # `Ode0` is checked in __all_parameters__ ) return params_eq class LambdaCDM(FLRW): """FLRW cosmology with a cosmological constant and curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of the cosmological constant in units of the critical density at z=0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import LambdaCDM >>> cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=Ode0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0) if self._Ok0 == 0: self._optimize_flat_norad() else: self._comoving_distance_z1z2 = self._elliptic_comoving_distance_z1z2 elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0) else: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list) def _optimize_flat_norad(self): """Set optimizations for flat LCDM cosmologies with no radiation.""" # Call out the Om0=0 (de Sitter) and Om0=1 (Einstein-de Sitter) # The dS case is required because the hypergeometric case # for Omega_M=0 would lead to an infinity in its argument. # The EdS case is three times faster than the hypergeometric. if self._Om0 == 0: self._comoving_distance_z1z2 = self._dS_comoving_distance_z1z2 self._age = self._dS_age self._lookback_time = self._dS_lookback_time elif self._Om0 == 1: self._comoving_distance_z1z2 = self._EdS_comoving_distance_z1z2 self._age = self._EdS_age self._lookback_time = self._EdS_lookback_time else: self._comoving_distance_z1z2 = self._hypergeometric_comoving_distance_z1z2 self._age = self._flat_age self._lookback_time = self._flat_lookback_time def w(self, z): r"""Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state. Returns `float` if the input is scalar. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = -1`. """ z = aszarr(z) return -1.0 * (np.ones(z.shape) if hasattr(z, "shape") else 1.0) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and in this case is given by :math:`I = 1`. """ z = aszarr(z) return np.ones(z.shape) if hasattr(z, "shape") else 1.0 def _elliptic_comoving_distance_z1z2(self, z1, z2): r"""Comoving transverse distance in Mpc between two redshifts. This value is the transverse comoving distance at redshift ``z`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if :math:`\Omega_k` is zero. For :math:`\Omega_{rad} = 0` the comoving distance can be directly calculated as an elliptic integral [1]_. Not valid or appropriate for flat cosmologies (Ok0=0). Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. References ---------- .. [1] Kantowski, R., Kao, J., & Thomas, R. (2000). Distance-Redshift in Inhomogeneous FLRW. arXiv e-prints, astro-ph/0002334. """ try: z1, z2 = np.broadcast_arrays(z1, z2) except ValueError as e: raise ValueError("z1 and z2 have different shapes") from e # The analytic solution is not valid for any of Om0, Ode0, Ok0 == 0. # Use the explicit integral solution for these cases. if self._Om0 == 0 or self._Ode0 == 0 or self._Ok0 == 0: return self._integral_comoving_distance_z1z2(z1, z2) b = -(27. / 2) * self._Om0**2 * self._Ode0 / self._Ok0**3 kappa = b / abs(b) if (b < 0) or (2 < b): def phi_z(Om0, Ok0, kappa, y1, A, z): return np.arccos(((z + 1.0) * Om0 / abs(Ok0) + kappa * y1 - A) / ((z + 1.0) * Om0 / abs(Ok0) + kappa * y1 + A)) v_k = pow(kappa * (b - 1) + sqrt(b * (b - 2)), 1. / 3) y1 = (-1 + kappa * (v_k + 1 / v_k)) / 3 A = sqrt(y1 * (3 * y1 + 2)) g = 1 / sqrt(A) k2 = (2 * A + kappa * (1 + 3 * y1)) / (4 * A) phi_z1 = phi_z(self._Om0, self._Ok0, kappa, y1, A, z1) phi_z2 = phi_z(self._Om0, self._Ok0, kappa, y1, A, z2) # Get lower-right 0 self._Ode0: def phi_z(Om0, Ok0, y1, y2, z): return np.arcsin(np.sqrt((y1 - y2) / ((z + 1.0) * Om0 / abs(Ok0) + y1))) yb = cos(acos(1 - b) / 3) yc = sqrt(3) * sin(acos(1 - b) / 3) y1 = (1. / 3) * (-1 + yb + yc) y2 = (1. / 3) * (-1 - 2 * yb) y3 = (1. / 3) * (-1 + yb - yc) g = 2 / sqrt(y1 - y2) k2 = (y1 - y3) / (y1 - y2) phi_z1 = phi_z(self._Om0, self._Ok0, y1, y2, z1) phi_z2 = phi_z(self._Om0, self._Ok0, y1, y2, z2) else: return self._integral_comoving_distance_z1z2(z1, z2) prefactor = self._hubble_distance / sqrt(abs(self._Ok0)) return prefactor * g * (ellipkinc(phi_z1, k2) - ellipkinc(phi_z2, k2)) def _dS_comoving_distance_z1z2(self, z1, z2): r""" Comoving line-of-sight distance in Mpc between objects at redshifts ``z1`` and ``z2`` in a flat, :math:`\Omega_{\Lambda}=1` cosmology (de Sitter). The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. The de Sitter case has an analytic solution. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. """ try: z1, z2 = np.broadcast_arrays(z1, z2) except ValueError as e: raise ValueError("z1 and z2 have different shapes") from e return self._hubble_distance * (z2 - z1) def _EdS_comoving_distance_z1z2(self, z1, z2): r""" Comoving line-of-sight distance in Mpc between objects at redshifts ``z1`` and ``z2`` in a flat, :math:`\Omega_M=1` cosmology (Einstein - de Sitter). The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. For :math:`\Omega_M=1`, :math:`\Omega_{rad}=0` the comoving distance has an analytic solution. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. """ try: z1, z2 = np.broadcast_arrays(z1, z2) except ValueError as e: raise ValueError("z1 and z2 have different shapes") from e prefactor = 2 * self._hubble_distance return prefactor * ((z1 + 1.0)**(-1./2) - (z2 + 1.0)**(-1./2)) def _hypergeometric_comoving_distance_z1z2(self, z1, z2): r""" Comoving line-of-sight distance in Mpc between objects at redshifts ``z1`` and ``z2``. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. For :math:`\Omega_{rad} = 0` the comoving distance can be directly calculated as a hypergeometric function [1]_. Parameters ---------- z1, z2 : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshifts. Returns ------- d : `~astropy.units.Quantity` ['length'] Comoving distance in Mpc between each input redshift. References ---------- .. [1] Baes, M., Camps, P., & Van De Putte, D. (2017). Analytical expressions and numerical evaluation of the luminosity distance in a flat cosmology. MNRAS, 468(1), 927-930. """ try: z1, z2 = np.broadcast_arrays(z1, z2) except ValueError as e: raise ValueError("z1 and z2 have different shapes") from e s = ((1 - self._Om0) / self._Om0) ** (1./3) # Use np.sqrt here to handle negative s (Om0>1). prefactor = self._hubble_distance / np.sqrt(s * self._Om0) return prefactor * (self._T_hypergeometric(s / (z1 + 1.0)) - self._T_hypergeometric(s / (z2 + 1.0))) def _T_hypergeometric(self, x): r"""Compute value using Gauss Hypergeometric function 2F1. .. math:: T(x) = 2 \sqrt(x) _{2}F_{1}\left(\frac{1}{6}, \frac{1}{2}; \frac{7}{6}; -x^3 \right) Notes ----- The :func:`scipy.special.hyp2f1` code already implements the hypergeometric transformation suggested by Baes et al. [1]_ for use in actual numerical evaulations. References ---------- .. [1] Baes, M., Camps, P., & Van De Putte, D. (2017). Analytical expressions and numerical evaluation of the luminosity distance in a flat cosmology. MNRAS, 468(1), 927-930. """ return 2 * np.sqrt(x) * hyp2f1(1./6, 1./2, 7./6, -x**3) def _dS_age(self, z): """Age of the universe in Gyr at redshift ``z``. The age of a de Sitter Universe is infinite. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] The age of the universe in Gyr at each input redshift. """ t = (inf if isinstance(z, Number) else np.full_like(z, inf, dtype=float)) return self._hubble_time * t def _EdS_age(self, z): r"""Age of the universe in Gyr at redshift ``z``. For :math:`\Omega_{rad} = 0` (:math:`T_{CMB} = 0`; massless neutrinos) the age can be directly calculated as an elliptic integral [1]_. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] The age of the universe in Gyr at each input redshift. References ---------- .. [1] Thomas, R., & Kantowski, R. (2000). Age-redshift relation for standard cosmology. PRD, 62(10), 103507. """ return (2./3) * self._hubble_time * (aszarr(z) + 1.0) ** (-1.5) def _flat_age(self, z): r"""Age of the universe in Gyr at redshift ``z``. For :math:`\Omega_{rad} = 0` (:math:`T_{CMB} = 0`; massless neutrinos) the age can be directly calculated as an elliptic integral [1]_. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] The age of the universe in Gyr at each input redshift. References ---------- .. [1] Thomas, R., & Kantowski, R. (2000). Age-redshift relation for standard cosmology. PRD, 62(10), 103507. """ # Use np.sqrt, np.arcsinh instead of math.sqrt, math.asinh # to handle properly the complex numbers for 1 - Om0 < 0 prefactor = (2./3) * self._hubble_time / np.emath.sqrt(1 - self._Om0) arg = np.arcsinh(np.emath.sqrt((1 / self._Om0 - 1 + 0j) / (aszarr(z) + 1.0)**3)) return (prefactor * arg).real def _EdS_lookback_time(self, z): r"""Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For :math:`\Omega_{rad} = 0` (:math:`T_{CMB} = 0`; massless neutrinos) the age can be directly calculated as an elliptic integral. The lookback time is here calculated based on the ``age(0) - age(z)``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] Lookback time in Gyr to each input redshift. """ return self._EdS_age(0) - self._EdS_age(z) def _dS_lookback_time(self, z): r"""Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For :math:`\Omega_{rad} = 0` (:math:`T_{CMB} = 0`; massless neutrinos) the age can be directly calculated. .. math:: a = exp(H * t) \ \text{where t=0 at z=0} t = (1/H) (ln 1 - ln a) = (1/H) (0 - ln (1/(1+z))) = (1/H) ln(1+z) Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] Lookback time in Gyr to each input redshift. """ return self._hubble_time * np.log(aszarr(z) + 1.0) def _flat_lookback_time(self, z): r"""Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For :math:`\Omega_{rad} = 0` (:math:`T_{CMB} = 0`; massless neutrinos) the age can be directly calculated. The lookback time is here calculated based on the ``age(0) - age(z)``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- t : `~astropy.units.Quantity` ['time'] Lookback time in Gyr to each input redshift. """ return self._flat_age(0) - self._flat_age(z) def efunc(self, z): """Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. """ # We override this because it takes a particularly simple # form for a cosmological constant if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return np.sqrt(zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0) def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The inverse redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H_z = H_0 / E`. """ if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return (zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0)**(-0.5) class FlatLambdaCDM(FlatFLRWMixin, LambdaCDM): """FLRW cosmology with a cosmological constant and no curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import FlatLambdaCDM >>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=0.0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0) # Repeat the optimization reassignments here because the init # of the LambaCDM above didn't actually create a flat cosmology. # That was done through the explicit tweak setting self._Ok0. self._optimize_flat_norad() elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0) else: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list) def efunc(self, z): """Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. """ # We override this because it takes a particularly simple # form for a cosmological constant if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return np.sqrt(zp1 ** 3 * (Or * zp1 + self._Om0) + self._Ode0) def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The inverse redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H_z = H_0 / E`. """ if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return (zp1 ** 3 * (Or * zp1 + self._Om0) + self._Ode0)**(-0.5) class wCDM(FLRW): """ FLRW cosmology with a constant dark energy equation of state and curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import wCDM >>> cosmo = wCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ w0 = Parameter(doc="Dark energy equation of state.", fvalidate="float") def __init__(self, H0, Om0, Ode0, w0=-1.0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=Ode0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) self.w0 = w0 # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0) else: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0) def w(self, z): r"""Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state Returns `float` if the input is scalar. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0`. """ z = aszarr(z) return self._w0 * (np.ones(z.shape) if hasattr(z, "shape") else 1.0) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and in this case is given by :math:`I = \left(1 + z\right)^{3\left(1 + w_0\right)}` """ return (aszarr(z) + 1.0) ** (3.0 * (1. + self._w0)) def efunc(self, z): """Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. """ if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return np.sqrt(zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0 * zp1 ** (3. * (1. + self._w0))) def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The inverse redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H_z = H_0 / E`. """ if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return (zp1 ** 2 * ((Or * zp1 + self._Om0) * zp1 + self._Ok0) + self._Ode0 * zp1 ** (3. * (1. + self._w0)))**(-0.5) class FlatwCDM(FlatFLRWMixin, wCDM): """ FLRW cosmology with a constant dark energy equation of state and no spatial curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import FlatwCDM >>> cosmo = FlatwCDM(H0=70, Om0=0.3, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, w0=-1.0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=0.0, w0=w0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._w0) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0, self._w0) else: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0) def efunc(self, z): """Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. """ if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return np.sqrt(zp1 ** 3 * (Or * zp1 + self._Om0) + self._Ode0 * zp1 ** (3. * (1 + self._w0))) def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- E : ndarray or float The inverse redshift scaling of the Hubble constant. Returns `float` if the input is scalar. Defined such that :math:`H(z) = H_0 E(z)`. """ if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = aszarr(z) + 1.0 # (converts z [unit] -> z [dimensionless]) return (zp1 ** 3 * (Or * zp1 + self._Om0) + self._Ode0 * zp1 ** (3. * (1. + self._w0)))**(-0.5) class w0waCDM(FLRW): r"""FLRW cosmology with a CPL dark energy equation of state and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski [1]_ and Linder [2]_: :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import w0waCDM >>> cosmo = w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) References ---------- .. [1] Chevallier, M., & Polarski, D. (2001). Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10(2), 213-223. .. [2] Linder, E. (2003). Exploring the Expansion History of the Universe. Phys. Rev. Lett., 90, 091301. """ w0 = Parameter(doc="Dark energy equation of state at z=0.", fvalidate="float") wa = Parameter(doc="Negative derivative of dark energy equation of state w.r.t. a.", fvalidate="float") def __init__(self, H0, Om0, Ode0, w0=-1.0, wa=0.0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=Ode0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) self.w0 = w0 self.wa = wa # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wa) def w(self, z): r"""Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state Returns `float` if the input is scalar. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0 + w_a (1 - a) = w_0 + w_a \frac{z}{1+z}`. """ z = aszarr(z) return self._w0 + self._wa * z / (z + 1.0) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and in this case is given by .. math:: I = \left(1 + z\right)^{3 \left(1 + w_0 + w_a\right)} \exp \left(-3 w_a \frac{z}{1+z}\right) """ z = aszarr(z) zp1 = z + 1.0 # (converts z [unit] -> z [dimensionless]) return zp1 ** (3 * (1 + self._w0 + self._wa)) * np.exp(-3 * self._wa * z / zp1) class Flatw0waCDM(FlatFLRWMixin, w0waCDM): """FLRW cosmology with a CPL dark energy equation of state and no curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski [1]_ and Linder [2]_: :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import Flatw0waCDM >>> cosmo = Flatw0waCDM(H0=70, Om0=0.3, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) References ---------- .. [1] Chevallier, M., & Polarski, D. (2001). Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10(2), 213-223. .. [2] Linder, E. (2003). Exploring the Expansion History of the Universe. Phys. Rev. Lett., 90, 091301. """ def __init__(self, H0, Om0, w0=-1.0, wa=0.0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=0.0, w0=w0, wa=wa, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._w0, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0, self._w0, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wa) class wpwaCDM(FLRW): r""" FLRW cosmology with a CPL dark energy equation of state, a pivot redshift, and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski [1]_ and Linder [2]_, but modified to have a pivot redshift as in the findings of the Dark Energy Task Force [3]_: :math:`w(a) = w_p + w_a (a_p - a) = w_p + w_a( 1/(1+zp) - 1/(1+z) )`. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. wp : float, optional Dark energy equation of state at the pivot redshift zp. This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has wp=-1.0 and wa=0.0. zp : float or quantity-like ['redshift'], optional Pivot redshift -- the redshift where w(z) = wp Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import wpwaCDM >>> cosmo = wpwaCDM(H0=70, Om0=0.3, Ode0=0.7, wp=-0.9, wa=0.2, zp=0.4) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) References ---------- .. [1] Chevallier, M., & Polarski, D. (2001). Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10(2), 213-223. .. [2] Linder, E. (2003). Exploring the Expansion History of the Universe. Phys. Rev. Lett., 90, 091301. .. [3] Albrecht, A., Amendola, L., Bernstein, G., Clowe, D., Eisenstein, D., Guzzo, L., Hirata, C., Huterer, D., Kirshner, R., Kolb, E., & Nichol, R. (2009). Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group. arXiv e-prints, arXiv:0901.0721. """ wp = Parameter(doc="Dark energy equation of state at the pivot redshift zp.", fvalidate="float") wa = Parameter(doc="Negative derivative of dark energy equation of state w.r.t. a.", fvalidate="float") zp = Parameter(doc="The pivot redshift, where w(z) = wp.", unit=cu.redshift) def __init__(self, H0, Om0, Ode0, wp=-1.0, wa=0.0, zp=0.0 * cu.redshift, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=Ode0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) self.wp = wp self.wa = wa self.zp = zp # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. apiv = 1.0 / (1.0 + self._zp.value) if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._wp, apiv, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._wp, apiv, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._wp, apiv, self._wa) def w(self, z): r"""Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state Returns `float` if the input is scalar. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_p + w_a (a_p - a)` where :math:`a = 1/1+z` and :math:`a_p = 1 / 1 + z_p`. """ apiv = 1.0 / (1.0 + self._zp.value) return self._wp + self._wa * (apiv - 1.0 / (aszarr(z) + 1.0)) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and in this case is given by .. math:: a_p = \frac{1}{1 + z_p} I = \left(1 + z\right)^{3 \left(1 + w_p + a_p w_a\right)} \exp \left(-3 w_a \frac{z}{1+z}\right) """ z = aszarr(z) zp1 = z + 1.0 # (converts z [unit] -> z [dimensionless]) apiv = 1. / (1. + self._zp.value) return zp1 ** (3. * (1. + self._wp + apiv * self._wa)) * \ np.exp(-3. * self._wa * z / zp1) class w0wzCDM(FLRW): """ FLRW cosmology with a variable dark energy equation of state and curvature. The equation for the dark energy equation of state uses the simple form: :math:`w(z) = w_0 + w_z z`. This form is not recommended for z > 1. Parameters ---------- H0 : float or scalar quantity-like ['frequency'] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]. Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0. This is pressure/density for dark energy in units where c=1. wz : float, optional Derivative of the dark energy equation of state with respect to z. A cosmological constant has w0=-1.0 and wz=0.0. Tcmb0 : float or scalar quantity-like ['temperature'], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : quantity-like ['energy', 'mass'] or array-like, optional Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str or None (optional, keyword-only) Name for this cosmological object. meta : mapping or None (optional, keyword-only) Metadata for the cosmology, e.g., a reference. Examples -------- >>> from astropy.cosmology import w0wzCDM >>> cosmo = w0wzCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wz=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ w0 = Parameter(doc="Dark energy equation of state at z=0.", fvalidate="float") wz = Parameter(doc="Derivative of the dark energy equation of state w.r.t. z.", fvalidate="float") def __init__(self, H0, Om0, Ode0, w0=-1.0, wz=0.0, Tcmb0=0.0*u.K, Neff=3.04, m_nu=0.0*u.eV, Ob0=None, *, name=None, meta=None): super().__init__(H0=H0, Om0=Om0, Ode0=Ode0, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, Ob0=Ob0, name=name, meta=meta) self.w0 = w0 self.wz = wz # Please see :ref:`astropy-cosmology-fast-integrals` for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0, self._wz) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0, self._wz) else: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wz) def w(self, z): r"""Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- w : ndarray or float The dark energy equation of state. Returns `float` if the input is scalar. Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\rho(z)` is the density at redshift z, both in units where c=1. Here this is given by :math:`w(z) = w_0 + w_z z`. """ return self._w0 + self._wz * aszarr(z) def de_density_scale(self, z): r"""Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : Quantity-like ['redshift'], array-like, or `~numbers.Number` Input redshift. Returns ------- I : ndarray or float The scaling of the energy density of dark energy with redshift. Returns `float` if the input is scalar. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and in this case is given by .. math:: I = \left(1 + z\right)^{3 \left(1 + w_0 - w_z\right)} \exp \left(-3 w_z z\right) """ z = aszarr(z) zp1 = z + 1.0 # (converts z [unit] -> z [dimensionless]) return zp1 ** (3. * (1. + self._w0 - self._wz)) * np.exp(-3. * self._wz * z)