# Licensed under a 3-clause BSD style license - see PYFITS.rst import math import os import re import time import pytest import numpy as np from numpy.testing import assert_equal from astropy.io import fits from astropy.io.fits.hdu.compressed import SUBTRACTIVE_DITHER_1, DITHER_SEED_CHECKSUM from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.data import get_pkg_data_filename from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa from .test_table import comparerecords from . import FitsTestCase class TestImageFunctions(FitsTestCase): def test_constructor_name_arg(self): """Like the test of the same name in test_table.py""" hdu = fits.ImageHDU() assert hdu.name == '' assert 'EXTNAME' not in hdu.header hdu.name = 'FOO' assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # Passing name to constructor hdu = fits.ImageHDU(name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # And overriding a header with a different extname hdr = fits.Header() hdr['EXTNAME'] = 'EVENTS' hdu = fits.ImageHDU(header=hdr, name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' def test_constructor_ver_arg(self): def assert_ver_is(hdu, reference_ver): assert hdu.ver == reference_ver assert hdu.header['EXTVER'] == reference_ver hdu = fits.ImageHDU() assert hdu.ver == 1 # defaults to 1 assert 'EXTVER' not in hdu.header hdu.ver = 1 assert_ver_is(hdu, 1) # Passing name to constructor hdu = fits.ImageHDU(ver=2) assert_ver_is(hdu, 2) # And overriding a header with a different extver hdr = fits.Header() hdr['EXTVER'] = 3 hdu = fits.ImageHDU(header=hdr, ver=4) assert_ver_is(hdu, 4) # The header card is not overridden if ver is None or not passed in hdr = fits.Header() hdr['EXTVER'] = 5 hdu = fits.ImageHDU(header=hdr, ver=None) assert_ver_is(hdu, 5) hdu = fits.ImageHDU(header=hdr) assert_ver_is(hdu, 5) def test_constructor_copies_header(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/153 Ensure that a header from one HDU is copied when used to initialize new HDU. """ ifd = fits.HDUList(fits.PrimaryHDU()) phdr = ifd[0].header phdr['FILENAME'] = 'labq01i3q_rawtag.fits' primary_hdu = fits.PrimaryHDU(header=phdr) ofd = fits.HDUList(primary_hdu) ofd[0].header['FILENAME'] = 'labq01i3q_flt.fits' # Original header should be unchanged assert phdr['FILENAME'] == 'labq01i3q_rawtag.fits' def test_open(self): # The function "open" reads a FITS file into an HDUList object. There # are three modes to open: "readonly" (the default), "append", and # "update". # Open a file read-only (the default mode), the content of the FITS # file are read into memory. r = fits.open(self.data('test0.fits')) # readonly # data parts are latent instantiation, so if we close the HDUList # without touching data, data can not be accessed. r.close() with pytest.raises(IndexError) as exc_info: r[1].data[:2, :2] # Check that the exception message is the enhanced version, not the # default message from list.__getitem__ assert str(exc_info.value) == ('HDU not found, possibly because the index ' 'is out of range, or because the file was ' 'closed before all HDUs were read') def test_open_2(self): r = fits.open(self.data('test0.fits')) info = ([(0, 'PRIMARY', 1, 'PrimaryHDU', 138, (), '', '')] + [(x, 'SCI', x, 'ImageHDU', 61, (40, 40), 'int16', '') for x in range(1, 5)]) try: assert r.info(output=False) == info finally: r.close() def test_open_3(self): # Test that HDUs cannot be accessed after the file was closed r = fits.open(self.data('test0.fits')) r.close() with pytest.raises(IndexError) as exc_info: r[1] # Check that the exception message is the enhanced version, not the # default message from list.__getitem__ assert str(exc_info.value) == ('HDU not found, possibly because the index ' 'is out of range, or because the file was ' 'closed before all HDUs were read') # Test that HDUs can be accessed with lazy_load_hdus=False r = fits.open(self.data('test0.fits'), lazy_load_hdus=False) r.close() assert isinstance(r[1], fits.ImageHDU) assert len(r) == 5 with pytest.raises(IndexError) as exc_info: r[6] assert str(exc_info.value) == 'list index out of range' # And the same with the global config item assert fits.conf.lazy_load_hdus # True by default fits.conf.lazy_load_hdus = False try: r = fits.open(self.data('test0.fits')) r.close() assert isinstance(r[1], fits.ImageHDU) assert len(r) == 5 finally: fits.conf.lazy_load_hdus = True def test_fortran_array(self): # Test that files are being correctly written+read for "C" and "F" order arrays a = np.arange(21).reshape(3, 7) b = np.asfortranarray(a) afits = self.temp('a_str.fits') bfits = self.temp('b_str.fits') # writing to str specified files fits.PrimaryHDU(data=a).writeto(afits) fits.PrimaryHDU(data=b).writeto(bfits) np.testing.assert_array_equal(fits.getdata(afits), a) np.testing.assert_array_equal(fits.getdata(bfits), a) # writing to fileobjs aafits = self.temp('a_fileobj.fits') bbfits = self.temp('b_fileobj.fits') with open(aafits, mode='wb') as fd: fits.PrimaryHDU(data=a).writeto(fd) with open(bbfits, mode='wb') as fd: fits.PrimaryHDU(data=b).writeto(fd) np.testing.assert_array_equal(fits.getdata(aafits), a) np.testing.assert_array_equal(fits.getdata(bbfits), a) def test_fortran_array_non_contiguous(self): # Test that files are being correctly written+read for 'C' and 'F' order arrays a = np.arange(105).reshape(3, 5, 7) b = np.asfortranarray(a) # writing to str specified files afits = self.temp('a_str_slice.fits') bfits = self.temp('b_str_slice.fits') fits.PrimaryHDU(data=a[::2, ::2]).writeto(afits) fits.PrimaryHDU(data=b[::2, ::2]).writeto(bfits) np.testing.assert_array_equal(fits.getdata(afits), a[::2, ::2]) np.testing.assert_array_equal(fits.getdata(bfits), a[::2, ::2]) # writing to fileobjs aafits = self.temp('a_fileobj_slice.fits') bbfits = self.temp('b_fileobj_slice.fits') with open(aafits, mode='wb') as fd: fits.PrimaryHDU(data=a[::2, ::2]).writeto(fd) with open(bbfits, mode='wb') as fd: fits.PrimaryHDU(data=b[::2, ::2]).writeto(fd) np.testing.assert_array_equal(fits.getdata(aafits), a[::2, ::2]) np.testing.assert_array_equal(fits.getdata(bbfits), a[::2, ::2]) def test_primary_with_extname(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/151 Tests that the EXTNAME keyword works with Primary HDUs as well, and interacts properly with the .name attribute. For convenience hdulist['PRIMARY'] will still refer to the first HDU even if it has an EXTNAME not equal to 'PRIMARY'. """ prihdr = fits.Header([('EXTNAME', 'XPRIMARY'), ('EXTVER', 1)]) hdul = fits.HDUList([fits.PrimaryHDU(header=prihdr)]) assert 'EXTNAME' in hdul[0].header assert hdul[0].name == 'XPRIMARY' assert hdul[0].name == hdul[0].header['EXTNAME'] info = [(0, 'XPRIMARY', 1, 'PrimaryHDU', 5, (), '', '')] assert hdul.info(output=False) == info assert hdul['PRIMARY'] is hdul['XPRIMARY'] assert hdul['PRIMARY'] is hdul[('XPRIMARY', 1)] hdul[0].name = 'XPRIMARY2' assert hdul[0].header['EXTNAME'] == 'XPRIMARY2' hdul.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert hdul[0].name == 'XPRIMARY2' def test_io_manipulation(self): # Get a keyword value. An extension can be referred by name or by # number. Both extension and keyword names are case insensitive. with fits.open(self.data('test0.fits')) as r: assert r['primary'].header['naxis'] == 0 assert r[0].header['naxis'] == 0 # If there are more than one extension with the same EXTNAME value, # the EXTVER can be used (as the second argument) to distinguish # the extension. assert r['sci', 1].header['detector'] == 1 # append (using "update()") a new card r[0].header['xxx'] = 1.234e56 assert ('\n'.join(str(x) for x in r[0].header.cards[-3:]) == "EXPFLAG = 'NORMAL ' / Exposure interruption indicator \n" "FILENAME= 'vtest3.fits' / File name \n" "XXX = 1.234E+56 ") # rename a keyword r[0].header.rename_keyword('filename', 'fname') pytest.raises(ValueError, r[0].header.rename_keyword, 'fname', 'history') pytest.raises(ValueError, r[0].header.rename_keyword, 'fname', 'simple') r[0].header.rename_keyword('fname', 'filename') # get a subsection of data assert np.array_equal(r[2].data[:3, :3], np.array([[349, 349, 348], [349, 349, 347], [347, 350, 349]], dtype=np.int16)) # We can create a new FITS file by opening a new file with "append" # mode. with fits.open(self.temp('test_new.fits'), mode='append') as n: # Append the primary header and the 2nd extension to the new # file. n.append(r[0]) n.append(r[2]) # The flush method will write the current HDUList object back # to the newly created file on disk. The HDUList is still open # and can be further operated. n.flush() assert n[1].data[1, 1] == 349 # modify a data point n[1].data[1, 1] = 99 # When the file is closed, the most recent additions of # extension(s) since last flush() will be appended, but any HDU # already existed at the last flush will not be modified del n # If an existing file is opened with "append" mode, like the # readonly mode, the HDU's will be read into the HDUList which can # be modified in memory but can not be written back to the original # file. A file opened with append mode can only add new HDU's. os.rename(self.temp('test_new.fits'), self.temp('test_append.fits')) with fits.open(self.temp('test_append.fits'), mode='append') as a: # The above change did not take effect since this was made # after the flush(). assert a[1].data[1, 1] == 349 a.append(r[1]) del a # When changes are made to an HDUList which was opened with # "update" mode, they will be written back to the original file # when a flush/close is called. os.rename(self.temp('test_append.fits'), self.temp('test_update.fits')) with fits.open(self.temp('test_update.fits'), mode='update') as u: # When the changes do not alter the size structures of the # original (or since last flush) HDUList, the changes are # written back "in place". assert u[0].header['rootname'] == 'U2EQ0201T' u[0].header['rootname'] = 'abc' assert u[1].data[1, 1] == 349 u[1].data[1, 1] = 99 u.flush() # If the changes affect the size structure, e.g. adding or # deleting HDU(s), header was expanded or reduced beyond # existing number of blocks (2880 bytes in each block), or # change the data size, the HDUList is written to a temporary # file, the original file is deleted, and the temporary file is # renamed to the original file name and reopened in the update # mode. To a user, these two kinds of updating writeback seem # to be the same, unless the optional argument in flush or # close is set to 1. del u[2] u.flush() # The write method in HDUList class writes the current HDUList, # with all changes made up to now, to a new file. This method # works the same disregard the mode the HDUList was opened # with. u.append(r[3]) u.writeto(self.temp('test_new.fits')) del u # Another useful new HDUList method is readall. It will "touch" the # data parts in all HDUs, so even if the HDUList is closed, we can # still operate on the data. with fits.open(self.data('test0.fits')) as r: r.readall() assert r[1].data[1, 1] == 315 # create an HDU with data only data = np.ones((3, 5), dtype=np.float32) hdu = fits.ImageHDU(data=data, name='SCI') assert np.array_equal(hdu.data, np.array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]], dtype=np.float32)) # create an HDU with header and data # notice that the header has the right NAXIS's since it is constructed # with ImageHDU hdu2 = fits.ImageHDU(header=r[1].header, data=np.array([1, 2], dtype='int32')) assert ('\n'.join(str(x) for x in hdu2.header.cards[1:5]) == "BITPIX = 32 / array data type \n" "NAXIS = 1 / number of array dimensions \n" "NAXIS1 = 2 \n" "PCOUNT = 0 / number of parameters ") def test_memory_mapping(self): # memory mapping f1 = fits.open(self.data('test0.fits'), memmap=1) f1.close() def test_verification_on_output(self): # verification on output # make a defect HDUList first x = fits.ImageHDU() hdu = fits.HDUList(x) # HDUList can take a list or one single HDU with pytest.warns(AstropyUserWarning, match=r"HDUList's 0th element is not a primary HDU\.") as w: hdu.verify() assert len(w) == 3 with pytest.warns(AstropyUserWarning, match=r"HDUList's 0th element is not a primary HDU\. " r"Fixed by inserting one as 0th HDU\.") as w: hdu.writeto(self.temp('test_new2.fits'), 'fix') assert len(w) == 3 def test_section(self): # section testing fs = fits.open(self.data('arange.fits')) assert np.array_equal(fs[0].section[3, 2, 5], 357) assert np.array_equal( fs[0].section[3, 2, :], np.array([352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362])) assert np.array_equal(fs[0].section[3, 2, 4:], np.array([356, 357, 358, 359, 360, 361, 362])) assert np.array_equal(fs[0].section[3, 2, :8], np.array([352, 353, 354, 355, 356, 357, 358, 359])) assert np.array_equal(fs[0].section[3, 2, -8:8], np.array([355, 356, 357, 358, 359])) assert np.array_equal( fs[0].section[3, 2:5, :], np.array([[352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362], [363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373], [374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384]])) assert np.array_equal(fs[0].section[3, :, :][:3, :3], np.array([[330, 331, 332], [341, 342, 343], [352, 353, 354]])) dat = fs[0].data assert np.array_equal(fs[0].section[3, 2:5, :8], dat[3, 2:5, :8]) assert np.array_equal(fs[0].section[3, 2:5, 3], dat[3, 2:5, 3]) assert np.array_equal(fs[0].section[3:6, :, :][:3, :3, :3], np.array([[[330, 331, 332], [341, 342, 343], [352, 353, 354]], [[440, 441, 442], [451, 452, 453], [462, 463, 464]], [[550, 551, 552], [561, 562, 563], [572, 573, 574]]])) assert np.array_equal(fs[0].section[:, :, :][:3, :2, :2], np.array([[[0, 1], [11, 12]], [[110, 111], [121, 122]], [[220, 221], [231, 232]]])) assert np.array_equal(fs[0].section[:, 2, :], dat[:, 2, :]) assert np.array_equal(fs[0].section[:, 2:5, :], dat[:, 2:5, :]) assert np.array_equal(fs[0].section[3:6, 3, :], dat[3:6, 3, :]) assert np.array_equal(fs[0].section[3:6, 3:7, :], dat[3:6, 3:7, :]) assert np.array_equal(fs[0].section[:, ::2], dat[:, ::2]) assert np.array_equal(fs[0].section[:, [1, 2, 4], 3], dat[:, [1, 2, 4], 3]) bool_index = np.array([True, False, True, True, False, False, True, True, False, True]) assert np.array_equal(fs[0].section[:, bool_index, :], dat[:, bool_index, :]) assert np.array_equal( fs[0].section[3:6, 3, :, ...], dat[3:6, 3, :, ...]) assert np.array_equal(fs[0].section[..., ::2], dat[..., ::2]) assert np.array_equal(fs[0].section[..., [1, 2, 4], 3], dat[..., [1, 2, 4], 3]) fs.close() def test_section_data_single(self): a = np.array([1]) hdu = fits.PrimaryHDU(a) hdu.writeto(self.temp('test_new.fits')) hdul = fits.open(self.temp('test_new.fits')) sec = hdul[0].section dat = hdul[0].data assert np.array_equal(sec[0], dat[0]) assert np.array_equal(sec[...], dat[...]) assert np.array_equal(sec[..., 0], dat[..., 0]) assert np.array_equal(sec[0, ...], dat[0, ...]) hdul.close() def test_section_data_square(self): a = np.arange(4).reshape(2, 2) hdu = fits.PrimaryHDU(a) hdu.writeto(self.temp('test_new.fits')) hdul = fits.open(self.temp('test_new.fits')) d = hdul[0] dat = hdul[0].data assert (d.section[:, :] == dat[:, :]).all() assert (d.section[0, :] == dat[0, :]).all() assert (d.section[1, :] == dat[1, :]).all() assert (d.section[:, 0] == dat[:, 0]).all() assert (d.section[:, 1] == dat[:, 1]).all() assert (d.section[0, 0] == dat[0, 0]).all() assert (d.section[0, 1] == dat[0, 1]).all() assert (d.section[1, 0] == dat[1, 0]).all() assert (d.section[1, 1] == dat[1, 1]).all() assert (d.section[0:1, 0:1] == dat[0:1, 0:1]).all() assert (d.section[0:2, 0:1] == dat[0:2, 0:1]).all() assert (d.section[0:1, 0:2] == dat[0:1, 0:2]).all() assert (d.section[0:2, 0:2] == dat[0:2, 0:2]).all() hdul.close() def test_section_data_cube(self): a = np.arange(18).reshape(2, 3, 3) hdu = fits.PrimaryHDU(a) hdu.writeto(self.temp('test_new.fits')) hdul = fits.open(self.temp('test_new.fits')) d = hdul[0] dat = hdul[0].data assert (d.section[:] == dat[:]).all() assert (d.section[:, :] == dat[:, :]).all() # Test that various combinations of indexing on the section are equal to # indexing the data. # Testing all combinations of scalar-index and [:] for each dimension. for idx1 in [slice(None), 0, 1]: for idx2 in [slice(None), 0, 1, 2]: for idx3 in [slice(None), 0, 1, 2]: nd_idx = (idx1, idx2, idx3) assert (d.section[nd_idx] == dat[nd_idx]).all() # Test all ways to slice the last dimension but keeping the first two. for idx3 in [slice(0, 1), slice(0, 2), slice(0, 3), slice(1, 2), slice(1, 3), slice(2, 3)]: nd_idx = (slice(None), slice(None), idx3) assert (d.section[nd_idx] == dat[nd_idx]).all() # Test various combinations (not exhaustive) to slice all dimensions. for idx1 in [slice(0, 1), slice(1, 2)]: for idx2 in [slice(0, 1), slice(0, 2), slice(0, 3), slice(1, 2), slice(1, 3)]: for idx3 in [slice(0, 1), slice(0, 2), slice(0, 3), slice(1, 2), slice(1, 3), slice(2, 3)]: nd_idx = (idx1, idx2, idx3) assert (d.section[nd_idx] == dat[nd_idx]).all() hdul.close() def test_section_data_four(self): a = np.arange(256).reshape(4, 4, 4, 4) hdu = fits.PrimaryHDU(a) hdu.writeto(self.temp('test_new.fits')) hdul = fits.open(self.temp('test_new.fits')) d = hdul[0] dat = hdul[0].data assert (d.section[:, :, :, :] == dat[:, :, :, :]).all() assert (d.section[:, :, :] == dat[:, :, :]).all() assert (d.section[:, :] == dat[:, :]).all() assert (d.section[:] == dat[:]).all() assert (d.section[0, :, :, :] == dat[0, :, :, :]).all() assert (d.section[0, :, 0, :] == dat[0, :, 0, :]).all() assert (d.section[:, :, 0, :] == dat[:, :, 0, :]).all() assert (d.section[:, 1, 0, :] == dat[:, 1, 0, :]).all() assert (d.section[:, :, :, 1] == dat[:, :, :, 1]).all() hdul.close() def test_section_data_scaled(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/143 This is like test_section_data_square but uses a file containing scaled image data, to test that sections can work correctly with scaled data. """ hdul = fits.open(self.data('scale.fits')) d = hdul[0] dat = hdul[0].data assert (d.section[:, :] == dat[:, :]).all() assert (d.section[0, :] == dat[0, :]).all() assert (d.section[1, :] == dat[1, :]).all() assert (d.section[:, 0] == dat[:, 0]).all() assert (d.section[:, 1] == dat[:, 1]).all() assert (d.section[0, 0] == dat[0, 0]).all() assert (d.section[0, 1] == dat[0, 1]).all() assert (d.section[1, 0] == dat[1, 0]).all() assert (d.section[1, 1] == dat[1, 1]).all() assert (d.section[0:1, 0:1] == dat[0:1, 0:1]).all() assert (d.section[0:2, 0:1] == dat[0:2, 0:1]).all() assert (d.section[0:1, 0:2] == dat[0:1, 0:2]).all() assert (d.section[0:2, 0:2] == dat[0:2, 0:2]).all() hdul.close() # Test without having accessed the full data first hdul = fits.open(self.data('scale.fits')) d = hdul[0] assert (d.section[:, :] == dat[:, :]).all() assert (d.section[0, :] == dat[0, :]).all() assert (d.section[1, :] == dat[1, :]).all() assert (d.section[:, 0] == dat[:, 0]).all() assert (d.section[:, 1] == dat[:, 1]).all() assert (d.section[0, 0] == dat[0, 0]).all() assert (d.section[0, 1] == dat[0, 1]).all() assert (d.section[1, 0] == dat[1, 0]).all() assert (d.section[1, 1] == dat[1, 1]).all() assert (d.section[0:1, 0:1] == dat[0:1, 0:1]).all() assert (d.section[0:2, 0:1] == dat[0:2, 0:1]).all() assert (d.section[0:1, 0:2] == dat[0:1, 0:2]).all() assert (d.section[0:2, 0:2] == dat[0:2, 0:2]).all() assert not d._data_loaded hdul.close() def test_do_not_scale_image_data(self): with fits.open(self.data('scale.fits'), do_not_scale_image_data=True) as hdul: assert hdul[0].data.dtype == np.dtype('>i2') with fits.open(self.data('scale.fits')) as hdul: assert hdul[0].data.dtype == np.dtype('float32') def test_append_uint_data(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/56 (BZERO and BSCALE added in the wrong location when appending scaled data) """ fits.writeto(self.temp('test_new.fits'), data=np.array([], dtype='uint8')) d = np.zeros([100, 100]).astype('uint16') fits.append(self.temp('test_new.fits'), data=d) with fits.open(self.temp('test_new.fits'), uint=True) as f: assert f[1].data.dtype == 'uint16' def test_scale_with_explicit_bzero_bscale(self): """ Regression test for https://github.com/astropy/astropy/issues/6399 """ hdu2 = fits.ImageHDU(np.random.rand(100, 100)) # The line below raised an exception in astropy 2.0, so if it does not # raise an error here, that is progress. hdu2.scale(type='uint8', bscale=1, bzero=0) def test_uint_header_consistency(self): """ Regression test for https://github.com/astropy/astropy/issues/2305 This ensures that an HDU containing unsigned integer data always has the appropriate BZERO value in its header. """ for int_size in (16, 32, 64): # Just make an array of some unsigned ints that wouldn't fit in a # signed int array of the same bit width max_uint = (2 ** int_size) - 1 if int_size == 64: max_uint = np.uint64(int_size) dtype = f'uint{int_size}' arr = np.empty(100, dtype=dtype) arr.fill(max_uint) arr -= np.arange(100, dtype=dtype) uint_hdu = fits.PrimaryHDU(data=arr) assert np.all(uint_hdu.data == arr) assert uint_hdu.data.dtype.name == f'uint{int_size}' assert 'BZERO' in uint_hdu.header assert uint_hdu.header['BZERO'] == (2 ** (int_size - 1)) filename = f'uint{int_size}.fits' uint_hdu.writeto(self.temp(filename)) with fits.open(self.temp(filename), uint=True) as hdul: new_uint_hdu = hdul[0] assert np.all(new_uint_hdu.data == arr) assert new_uint_hdu.data.dtype.name == f'uint{int_size}' assert 'BZERO' in new_uint_hdu.header assert new_uint_hdu.header['BZERO'] == (2 ** (int_size - 1)) @pytest.mark.parametrize(('from_file'), (False, True)) @pytest.mark.parametrize(('do_not_scale'), (False,)) def test_uint_header_keywords_removed_after_bitpix_change(self, from_file, do_not_scale): """ Regression test for https://github.com/astropy/astropy/issues/4974 BZERO/BSCALE should be removed if data is converted to a floating point type. Currently excluding the case where do_not_scale_image_data=True because it is not clear what the expectation should be. """ arr = np.zeros(100, dtype='uint16') if from_file: # To generate the proper input file we always want to scale the # data before writing it...otherwise when we open it will be # regular (signed) int data. tmp_uint = fits.PrimaryHDU(arr) filename = 'unsigned_int.fits' tmp_uint.writeto(self.temp(filename)) with fits.open(self.temp(filename), do_not_scale_image_data=do_not_scale) as f: uint_hdu = f[0] # Force a read before we close. _ = uint_hdu.data else: uint_hdu = fits.PrimaryHDU(arr, do_not_scale_image_data=do_not_scale) # Make sure appropriate keywords are in the header. See # https://github.com/astropy/astropy/pull/3916#issuecomment-122414532 # for discussion. assert 'BSCALE' in uint_hdu.header assert 'BZERO' in uint_hdu.header assert uint_hdu.header['BSCALE'] == 1 assert uint_hdu.header['BZERO'] == 32768 # Convert data to floating point... uint_hdu.data = uint_hdu.data * 1.0 # ...bitpix should be negative. assert uint_hdu.header['BITPIX'] < 0 # BSCALE and BZERO should NOT be in header any more. assert 'BSCALE' not in uint_hdu.header assert 'BZERO' not in uint_hdu.header # This is the main test...the data values should round trip # as zero. filename = 'test_uint_to_float.fits' uint_hdu.writeto(self.temp(filename)) with fits.open(self.temp(filename)) as hdul: assert (hdul[0].data == 0).all() def test_blanks(self): """Test image data with blank spots in it (which should show up as NaNs in the data array. """ arr = np.zeros((10, 10), dtype=np.int32) # One row will be blanks arr[1] = 999 hdu = fits.ImageHDU(data=arr) hdu.header['BLANK'] = 999 hdu.writeto(self.temp('test_new.fits')) with fits.open(self.temp('test_new.fits')) as hdul: assert np.isnan(hdul[1].data[1]).all() def test_invalid_blanks(self): """ Test that invalid use of the BLANK keyword leads to an appropriate warning, and that the BLANK keyword is ignored when returning the HDU data. Regression test for https://github.com/astropy/astropy/issues/3865 """ arr = np.arange(5, dtype=np.float64) hdu = fits.PrimaryHDU(data=arr) hdu.header['BLANK'] = 2 with pytest.warns(AstropyUserWarning, match="Invalid 'BLANK' keyword in header") as w: hdu.writeto(self.temp('test_new.fits')) # Allow the HDU to be written, but there should be a warning # when writing a header with BLANK when then data is not # int assert len(w) == 1 # Should also get a warning when opening the file, and the BLANK # value should not be applied with pytest.warns(AstropyUserWarning, match="Invalid 'BLANK' keyword in header") as w: with fits.open(self.temp('test_new.fits')) as h: assert np.all(arr == h[0].data) assert len(w) == 1 @pytest.mark.filterwarnings("ignore:Invalid 'BLANK' keyword in header") def test_scale_back_with_blanks(self): """ Test that when auto-rescaling integer data with "blank" values (where the blanks are replaced by NaN in the float data), that the "BLANK" keyword is removed from the header. Further, test that when using the ``scale_back=True`` option the blank values are restored properly. Regression test for https://github.com/astropy/astropy/issues/3865 """ # Make the sample file arr = np.arange(5, dtype=np.int32) hdu = fits.PrimaryHDU(data=arr) hdu.scale('int16', bscale=1.23) # Creating data that uses BLANK is currently kludgy--a separate issue # TODO: Rewrite this test when scaling with blank support is better # supported # Let's just add a value to the data that should be converted to NaN # when it is read back in: filename = self.temp('test.fits') hdu.data[0] = 9999 hdu.header['BLANK'] = 9999 hdu.writeto(filename) with fits.open(filename) as hdul: data = hdul[0].data assert np.isnan(data[0]) with pytest.warns(fits.verify.VerifyWarning, match=r"Invalid 'BLANK' keyword in header"): hdul.writeto(self.temp('test2.fits')) # Now reopen the newly written file. It should not have a 'BLANK' # keyword with fits.open(self.temp('test2.fits')) as hdul2: assert 'BLANK' not in hdul2[0].header data = hdul2[0].data assert np.isnan(data[0]) # Finally, test that scale_back keeps the BLANKs correctly with fits.open(filename, scale_back=True, mode='update') as hdul3: data = hdul3[0].data # This emits warning that pytest cannot catch properly, so we # catch it with pytest.mark.filterwarnings above. assert np.isnan(data[0]) with fits.open(filename, do_not_scale_image_data=True) as hdul4: assert hdul4[0].header['BLANK'] == 9999 assert hdul4[0].header['BSCALE'] == 1.23 assert hdul4[0].data[0] == 9999 def test_bzero_with_floats(self): """Test use of the BZERO keyword in an image HDU containing float data. """ arr = np.zeros((10, 10)) - 1 hdu = fits.ImageHDU(data=arr) hdu.header['BZERO'] = 1.0 hdu.writeto(self.temp('test_new.fits')) with fits.open(self.temp('test_new.fits')) as hdul: arr += 1 assert (hdul[1].data == arr).all() def test_rewriting_large_scaled_image(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/84 and https://aeon.stsci.edu/ssb/trac/pyfits/ticket/101 """ hdul = fits.open(self.data('fixed-1890.fits')) orig_data = hdul[0].data hdul.writeto(self.temp('test_new.fits'), overwrite=True) hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[0].data == orig_data).all() hdul.close() # Just as before, but this time don't touch hdul[0].data before writing # back out--this is the case that failed in # https://aeon.stsci.edu/ssb/trac/pyfits/ticket/84 hdul = fits.open(self.data('fixed-1890.fits')) hdul.writeto(self.temp('test_new.fits'), overwrite=True) hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[0].data == orig_data).all() hdul.close() # Test opening/closing/reopening a scaled file in update mode hdul = fits.open(self.data('fixed-1890.fits'), do_not_scale_image_data=True) hdul.writeto(self.temp('test_new.fits'), overwrite=True, output_verify='silentfix') hdul.close() hdul = fits.open(self.temp('test_new.fits')) orig_data = hdul[0].data hdul.close() hdul = fits.open(self.temp('test_new.fits'), mode='update') hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[0].data == orig_data).all() hdul.close() def test_image_update_header(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/105 Replacing the original header to an image HDU and saving should update the NAXISn keywords appropriately and save the image data correctly. """ # Copy the original file before saving to it self.copy_file('test0.fits') with fits.open(self.temp('test0.fits'), mode='update') as hdul: orig_data = hdul[1].data.copy() hdr_copy = hdul[1].header.copy() del hdr_copy['NAXIS*'] hdul[1].header = hdr_copy with fits.open(self.temp('test0.fits')) as hdul: assert (orig_data == hdul[1].data).all() def test_open_scaled_in_update_mode(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/119 (Don't update scaled image data if the data is not read) This ensures that merely opening and closing a file containing scaled image data does not cause any change to the data (or the header). Changes should only occur if the data is accessed. """ # Copy the original file before making any possible changes to it self.copy_file('scale.fits') mtime = os.stat(self.temp('scale.fits')).st_mtime time.sleep(1) fits.open(self.temp('scale.fits'), mode='update').close() # Ensure that no changes were made to the file merely by immediately # opening and closing it. assert mtime == os.stat(self.temp('scale.fits')).st_mtime # Insert a slight delay to ensure the mtime does change when the file # is changed time.sleep(1) hdul = fits.open(self.temp('scale.fits'), 'update') orig_data = hdul[0].data hdul.close() # Now the file should be updated with the rescaled data assert mtime != os.stat(self.temp('scale.fits')).st_mtime hdul = fits.open(self.temp('scale.fits'), mode='update') assert hdul[0].data.dtype == np.dtype('>f4') assert hdul[0].header['BITPIX'] == -32 assert 'BZERO' not in hdul[0].header assert 'BSCALE' not in hdul[0].header assert (orig_data == hdul[0].data).all() # Try reshaping the data, then closing and reopening the file; let's # see if all the changes are preserved properly hdul[0].data.shape = (42, 10) hdul.close() hdul = fits.open(self.temp('scale.fits')) assert hdul[0].shape == (42, 10) assert hdul[0].data.dtype == np.dtype('>f4') assert hdul[0].header['BITPIX'] == -32 assert 'BZERO' not in hdul[0].header assert 'BSCALE' not in hdul[0].header hdul.close() def test_scale_back(self): """A simple test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/120 The scale_back feature for image HDUs. """ self.copy_file('scale.fits') with fits.open(self.temp('scale.fits'), mode='update', scale_back=True) as hdul: orig_bitpix = hdul[0].header['BITPIX'] orig_bzero = hdul[0].header['BZERO'] orig_bscale = hdul[0].header['BSCALE'] orig_data = hdul[0].data.copy() hdul[0].data[0] = 0 with fits.open(self.temp('scale.fits'), do_not_scale_image_data=True) as hdul: assert hdul[0].header['BITPIX'] == orig_bitpix assert hdul[0].header['BZERO'] == orig_bzero assert hdul[0].header['BSCALE'] == orig_bscale zero_point = int(math.floor(-orig_bzero / orig_bscale)) assert (hdul[0].data[0] == zero_point).all() with fits.open(self.temp('scale.fits')) as hdul: assert (hdul[0].data[1:] == orig_data[1:]).all() def test_image_none(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/27 """ with fits.open(self.data('test0.fits')) as h: h[1].data h[1].data = None h[1].writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert h[1].data is None assert h[1].header['NAXIS'] == 0 assert 'NAXIS1' not in h[1].header assert 'NAXIS2' not in h[1].header def test_invalid_blank(self): """ Regression test for https://github.com/astropy/astropy/issues/2711 If the BLANK keyword contains an invalid value it should be ignored for any calculations (though a warning should be issued). """ data = np.arange(100, dtype=np.float64) hdu = fits.PrimaryHDU(data) hdu.header['BLANK'] = 'nan' with pytest.warns(fits.verify.VerifyWarning, match=r"Invalid value for " r"'BLANK' keyword in header: 'nan'"): hdu.writeto(self.temp('test.fits')) with pytest.warns(AstropyUserWarning) as w: with fits.open(self.temp('test.fits')) as hdul: assert np.all(hdul[0].data == data) assert len(w) == 2 msg = "Invalid value for 'BLANK' keyword in header" assert msg in str(w[0].message) msg = "Invalid 'BLANK' keyword" assert msg in str(w[1].message) def test_scaled_image_fromfile(self): """ Regression test for https://github.com/astropy/astropy/issues/2710 """ # Make some sample data a = np.arange(100, dtype=np.float32) hdu = fits.PrimaryHDU(data=a.copy()) hdu.scale(bscale=1.1) hdu.writeto(self.temp('test.fits')) with open(self.temp('test.fits'), 'rb') as f: file_data = f.read() hdul = fits.HDUList.fromstring(file_data) assert np.allclose(hdul[0].data, a) def test_set_data(self): """ Test data assignment - issue #5087 """ im = fits.ImageHDU() ar = np.arange(12) im.data = ar def test_scale_bzero_with_int_data(self): """ Regression test for https://github.com/astropy/astropy/issues/4600 """ a = np.arange(100, 200, dtype=np.int16) hdu1 = fits.PrimaryHDU(data=a.copy()) hdu2 = fits.PrimaryHDU(data=a.copy()) # Previously the following line would throw a TypeError, # now it should be identical to the integer bzero case hdu1.scale('int16', bzero=99.0) hdu2.scale('int16', bzero=99) assert np.allclose(hdu1.data, hdu2.data) def test_scale_back_uint_assignment(self): """ Extend fix for #4600 to assignment to data Suggested by: https://github.com/astropy/astropy/pull/4602#issuecomment-208713748 """ a = np.arange(100, 200, dtype=np.uint16) fits.PrimaryHDU(a).writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits'), mode="update", scale_back=True) as (hdu,): hdu.data[:] = 0 assert np.allclose(hdu.data, 0) def test_hdu_creation_with_scalar(self): msg = r'data object array\(1\) should have at least one dimension' with pytest.raises(TypeError, match=msg): fits.ImageHDU(data=1) with pytest.raises(TypeError, match=msg): fits.PrimaryHDU(data=1) class TestCompressedImage(FitsTestCase): def test_empty(self): """ Regression test for https://github.com/astropy/astropy/issues/2595 """ hdu = fits.CompImageHDU() assert hdu.data is None hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits'), mode='update') as hdul: assert len(hdul) == 2 assert isinstance(hdul[1], fits.CompImageHDU) assert hdul[1].data is None # Now test replacing the empty data with an array and see what # happens hdul[1].data = np.arange(100, dtype=np.int32) with fits.open(self.temp('test.fits')) as hdul: assert len(hdul) == 2 assert isinstance(hdul[1], fits.CompImageHDU) assert np.all(hdul[1].data == np.arange(100, dtype=np.int32)) @pytest.mark.parametrize( ('data', 'compression_type', 'quantize_level'), [(np.zeros((2, 10, 10), dtype=np.float32), 'RICE_1', 16), (np.zeros((2, 10, 10), dtype=np.float32), 'GZIP_1', -0.01), (np.zeros((2, 10, 10), dtype=np.float32), 'GZIP_2', -0.01), (np.zeros((100, 100)) + 1, 'HCOMPRESS_1', 16), (np.zeros((10, 10)), 'PLIO_1', 16)]) @pytest.mark.parametrize('byte_order', ['<', '>']) def test_comp_image(self, data, compression_type, quantize_level, byte_order): data = data.newbyteorder(byte_order) primary_hdu = fits.PrimaryHDU() ofd = fits.HDUList(primary_hdu) chdu = fits.CompImageHDU(data, name='SCI', compression_type=compression_type, quantize_level=quantize_level) ofd.append(chdu) ofd.writeto(self.temp('test_new.fits'), overwrite=True) ofd.close() with fits.open(self.temp('test_new.fits')) as fd: assert (fd[1].data == data).all() assert fd[1].header['NAXIS'] == chdu.header['NAXIS'] assert fd[1].header['NAXIS1'] == chdu.header['NAXIS1'] assert fd[1].header['NAXIS2'] == chdu.header['NAXIS2'] assert fd[1].header['BITPIX'] == chdu.header['BITPIX'] @pytest.mark.skipif('not HAS_SCIPY') def test_comp_image_quantize_level(self): """ Regression test for https://github.com/astropy/astropy/issues/5969 Test that quantize_level is used. """ import scipy.misc np.random.seed(42) data = scipy.misc.ascent() + np.random.randn(512, 512)*10 fits.ImageHDU(data).writeto(self.temp('im1.fits')) fits.CompImageHDU(data, compression_type='RICE_1', quantize_method=1, quantize_level=-1, dither_seed=5)\ .writeto(self.temp('im2.fits')) fits.CompImageHDU(data, compression_type='RICE_1', quantize_method=1, quantize_level=-100, dither_seed=5)\ .writeto(self.temp('im3.fits')) im1 = fits.getdata(self.temp('im1.fits')) im2 = fits.getdata(self.temp('im2.fits')) im3 = fits.getdata(self.temp('im3.fits')) assert not np.array_equal(im2, im3) assert np.isclose(np.min(im1 - im2), -0.5, atol=1e-3) assert np.isclose(np.max(im1 - im2), 0.5, atol=1e-3) assert np.isclose(np.min(im1 - im3), -50, atol=1e-1) assert np.isclose(np.max(im1 - im3), 50, atol=1e-1) def test_comp_image_hcompression_1_invalid_data(self): """ Tests compression with the HCOMPRESS_1 algorithm with data that is not 2D and has a non-2D tile size. """ pytest.raises(ValueError, fits.CompImageHDU, np.zeros((2, 10, 10), dtype=np.float32), name='SCI', compression_type='HCOMPRESS_1', quantize_level=16, tile_size=[2, 10, 10]) def test_comp_image_hcompress_image_stack(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/171 Tests that data containing more than two dimensions can be compressed with HCOMPRESS_1 so long as the user-supplied tile size can be flattened to two dimensions. """ cube = np.arange(300, dtype=np.float32).reshape(3, 10, 10) hdu = fits.CompImageHDU(data=cube, name='SCI', compression_type='HCOMPRESS_1', quantize_level=16, tile_size=[5, 5, 1]) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: # HCOMPRESSed images are allowed to deviate from the original by # about 1/quantize_level of the RMS in each tile. assert np.abs(hdul['SCI'].data - cube).max() < 1./15. def test_subtractive_dither_seed(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/32 Ensure that when floating point data is compressed with the SUBTRACTIVE_DITHER_1 quantization method that the correct ZDITHER0 seed is added to the header, and that the data can be correctly decompressed. """ array = np.arange(100.0).reshape(10, 10) csum = (array[0].view('uint8').sum() % 10000) + 1 hdu = fits.CompImageHDU(data=array, quantize_method=SUBTRACTIVE_DITHER_1, dither_seed=DITHER_SEED_CHECKSUM) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert isinstance(hdul[1], fits.CompImageHDU) assert 'ZQUANTIZ' in hdul[1]._header assert hdul[1]._header['ZQUANTIZ'] == 'SUBTRACTIVE_DITHER_1' assert 'ZDITHER0' in hdul[1]._header assert hdul[1]._header['ZDITHER0'] == csum assert np.all(hdul[1].data == array) def test_disable_image_compression(self): with fits.open(self.data('comp.fits'), disable_image_compression=True) as hdul: # The compressed image HDU should show up as a BinTableHDU, but # *not* a CompImageHDU assert isinstance(hdul[1], fits.BinTableHDU) assert not isinstance(hdul[1], fits.CompImageHDU) with fits.open(self.data('comp.fits')) as hdul: assert isinstance(hdul[1], fits.CompImageHDU) def test_open_comp_image_in_update_mode(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/167 Similar to test_open_scaled_in_update_mode(), but specifically for compressed images. """ # Copy the original file before making any possible changes to it self.copy_file('comp.fits') mtime = os.stat(self.temp('comp.fits')).st_mtime time.sleep(1) fits.open(self.temp('comp.fits'), mode='update').close() # Ensure that no changes were made to the file merely by immediately # opening and closing it. assert mtime == os.stat(self.temp('comp.fits')).st_mtime def test_open_scaled_in_update_mode_compressed(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/88 2 Identical to test_open_scaled_in_update_mode() but with a compressed version of the scaled image. """ # Copy+compress the original file before making any possible changes to # it with fits.open(self.data('scale.fits'), do_not_scale_image_data=True) as hdul: chdu = fits.CompImageHDU(data=hdul[0].data, header=hdul[0].header) chdu.writeto(self.temp('scale.fits')) mtime = os.stat(self.temp('scale.fits')).st_mtime time.sleep(1) fits.open(self.temp('scale.fits'), mode='update').close() # Ensure that no changes were made to the file merely by immediately # opening and closing it. assert mtime == os.stat(self.temp('scale.fits')).st_mtime # Insert a slight delay to ensure the mtime does change when the file # is changed time.sleep(1) hdul = fits.open(self.temp('scale.fits'), 'update') hdul[1].data hdul.close() # Now the file should be updated with the rescaled data assert mtime != os.stat(self.temp('scale.fits')).st_mtime hdul = fits.open(self.temp('scale.fits'), mode='update') assert hdul[1].data.dtype == np.dtype('float32') assert hdul[1].header['BITPIX'] == -32 assert 'BZERO' not in hdul[1].header assert 'BSCALE' not in hdul[1].header # Try reshaping the data, then closing and reopening the file; let's # see if all the changes are preserved properly hdul[1].data.shape = (42, 10) hdul.close() hdul = fits.open(self.temp('scale.fits')) assert hdul[1].shape == (42, 10) assert hdul[1].data.dtype == np.dtype('float32') assert hdul[1].header['BITPIX'] == -32 assert 'BZERO' not in hdul[1].header assert 'BSCALE' not in hdul[1].header hdul.close() def test_write_comp_hdu_direct_from_existing(self): with fits.open(self.data('comp.fits')) as hdul: hdul[1].writeto(self.temp('test.fits')) with fits.open(self.data('comp.fits')) as hdul1: with fits.open(self.temp('test.fits')) as hdul2: assert np.all(hdul1[1].data == hdul2[1].data) assert comparerecords(hdul1[1].compressed_data, hdul2[1].compressed_data) def test_rewriting_large_scaled_image_compressed(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/88 1 Identical to test_rewriting_large_scaled_image() but with a compressed image. """ with fits.open(self.data('fixed-1890.fits'), do_not_scale_image_data=True) as hdul: chdu = fits.CompImageHDU(data=hdul[0].data, header=hdul[0].header) chdu.writeto(self.temp('fixed-1890-z.fits')) hdul = fits.open(self.temp('fixed-1890-z.fits')) orig_data = hdul[1].data hdul.writeto(self.temp('test_new.fits'), overwrite=True) hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[1].data == orig_data).all() hdul.close() # Just as before, but this time don't touch hdul[0].data before writing # back out--this is the case that failed in # https://aeon.stsci.edu/ssb/trac/pyfits/ticket/84 hdul = fits.open(self.temp('fixed-1890-z.fits')) hdul.writeto(self.temp('test_new.fits'), overwrite=True) hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[1].data == orig_data).all() hdul.close() # Test opening/closing/reopening a scaled file in update mode hdul = fits.open(self.temp('fixed-1890-z.fits'), do_not_scale_image_data=True) hdul.writeto(self.temp('test_new.fits'), overwrite=True, output_verify='silentfix') hdul.close() hdul = fits.open(self.temp('test_new.fits')) orig_data = hdul[1].data hdul.close() hdul = fits.open(self.temp('test_new.fits'), mode='update') hdul.close() hdul = fits.open(self.temp('test_new.fits')) assert (hdul[1].data == orig_data).all() hdul.close() def test_scale_back_compressed(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/88 3 Identical to test_scale_back() but uses a compressed image. """ # Create a compressed version of the scaled image with fits.open(self.data('scale.fits'), do_not_scale_image_data=True) as hdul: chdu = fits.CompImageHDU(data=hdul[0].data, header=hdul[0].header) chdu.writeto(self.temp('scale.fits')) with fits.open(self.temp('scale.fits'), mode='update', scale_back=True) as hdul: orig_bitpix = hdul[1].header['BITPIX'] orig_bzero = hdul[1].header['BZERO'] orig_bscale = hdul[1].header['BSCALE'] orig_data = hdul[1].data.copy() hdul[1].data[0] = 0 with fits.open(self.temp('scale.fits'), do_not_scale_image_data=True) as hdul: assert hdul[1].header['BITPIX'] == orig_bitpix assert hdul[1].header['BZERO'] == orig_bzero assert hdul[1].header['BSCALE'] == orig_bscale zero_point = int(math.floor(-orig_bzero / orig_bscale)) assert (hdul[1].data[0] == zero_point).all() with fits.open(self.temp('scale.fits')) as hdul: assert (hdul[1].data[1:] == orig_data[1:]).all() # Extra test to ensure that after everything the data is still the # same as in the original uncompressed version of the image with fits.open(self.data('scale.fits')) as hdul2: # Recall we made the same modification to the data in hdul # above hdul2[0].data[0] = 0 assert (hdul[1].data == hdul2[0].data).all() def test_lossless_gzip_compression(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/198""" rng = np.random.default_rng(42) noise = rng.normal(size=(20, 20)) chdu1 = fits.CompImageHDU(data=noise, compression_type='GZIP_1') # First make a test image with lossy compression and make sure it # wasn't compressed perfectly. This shouldn't happen ever, but just to # make sure the test non-trivial. chdu1.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert np.abs(noise - h[1].data).max() > 0.0 del h chdu2 = fits.CompImageHDU(data=noise, compression_type='GZIP_1', quantize_level=0.0) # No quantization chdu2.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as h: assert (noise == h[1].data).all() def test_compression_column_tforms(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/199""" # Some interestingly tiled data so that some of it is quantized and # some of it ends up just getting gzip-compressed data2 = ((np.arange(1, 8, dtype=np.float32) * 10)[:, np.newaxis] + np.arange(1, 7)) np.random.seed(1337) data1 = np.random.uniform(size=(6 * 4, 7 * 4)) data1[:data2.shape[0], :data2.shape[1]] = data2 chdu = fits.CompImageHDU(data1, compression_type='RICE_1', tile_size=(6, 7)) chdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits'), disable_image_compression=True) as h: assert re.match(r'^1PB\(\d+\)$', h[1].header['TFORM1']) assert re.match(r'^1PB\(\d+\)$', h[1].header['TFORM2']) def test_compression_update_header(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/23 """ self.copy_file('comp.fits') with fits.open(self.temp('comp.fits'), mode='update') as hdul: assert isinstance(hdul[1], fits.CompImageHDU) hdul[1].header['test1'] = 'test' hdul[1]._header['test2'] = 'test2' with fits.open(self.temp('comp.fits')) as hdul: assert 'test1' in hdul[1].header assert hdul[1].header['test1'] == 'test' assert 'test2' in hdul[1].header assert hdul[1].header['test2'] == 'test2' # Test update via index now: with fits.open(self.temp('comp.fits'), mode='update') as hdul: hdr = hdul[1].header hdr[hdr.index('TEST1')] = 'foo' with fits.open(self.temp('comp.fits')) as hdul: assert hdul[1].header['TEST1'] == 'foo' # Test slice updates with fits.open(self.temp('comp.fits'), mode='update') as hdul: hdul[1].header['TEST*'] = 'qux' with fits.open(self.temp('comp.fits')) as hdul: assert list(hdul[1].header['TEST*'].values()) == ['qux', 'qux'] with fits.open(self.temp('comp.fits'), mode='update') as hdul: hdr = hdul[1].header idx = hdr.index('TEST1') hdr[idx:idx + 2] = 'bar' with fits.open(self.temp('comp.fits')) as hdul: assert list(hdul[1].header['TEST*'].values()) == ['bar', 'bar'] # Test updating a specific COMMENT card duplicate with fits.open(self.temp('comp.fits'), mode='update') as hdul: hdul[1].header[('COMMENT', 1)] = 'I am fire. I am death!' with fits.open(self.temp('comp.fits')) as hdul: assert hdul[1].header['COMMENT'][1] == 'I am fire. I am death!' assert hdul[1]._header['COMMENT'][1] == 'I am fire. I am death!' # Test deleting by keyword and by slice with fits.open(self.temp('comp.fits'), mode='update') as hdul: hdr = hdul[1].header del hdr['COMMENT'] idx = hdr.index('TEST1') del hdr[idx:idx + 2] with fits.open(self.temp('comp.fits')) as hdul: assert 'COMMENT' not in hdul[1].header assert 'COMMENT' not in hdul[1]._header assert 'TEST1' not in hdul[1].header assert 'TEST1' not in hdul[1]._header assert 'TEST2' not in hdul[1].header assert 'TEST2' not in hdul[1]._header def test_compression_update_header_with_reserved(self): """ Ensure that setting reserved keywords related to the table data structure on CompImageHDU image headers fails. """ def test_set_keyword(hdr, keyword, value): with pytest.warns(UserWarning) as w: hdr[keyword] = value assert len(w) == 1 assert str(w[0].message).startswith( f"Keyword {keyword!r} is reserved") assert keyword not in hdr with fits.open(self.data('comp.fits')) as hdul: hdr = hdul[1].header test_set_keyword(hdr, 'TFIELDS', 8) test_set_keyword(hdr, 'TTYPE1', 'Foo') test_set_keyword(hdr, 'ZCMPTYPE', 'ASDF') test_set_keyword(hdr, 'ZVAL1', 'Foo') def test_compression_header_append(self): with fits.open(self.data('comp.fits')) as hdul: imghdr = hdul[1].header tblhdr = hdul[1]._header with pytest.warns(UserWarning, match="Keyword 'TFIELDS' is reserved") as w: imghdr.append('TFIELDS') assert len(w) == 1 assert 'TFIELDS' not in imghdr imghdr.append(('FOO', 'bar', 'qux'), end=True) assert 'FOO' in imghdr assert imghdr[-1] == 'bar' assert 'FOO' in tblhdr assert tblhdr[-1] == 'bar' imghdr.append(('CHECKSUM', 'abcd1234')) assert 'CHECKSUM' in imghdr assert imghdr['CHECKSUM'] == 'abcd1234' assert 'CHECKSUM' not in tblhdr assert 'ZHECKSUM' in tblhdr assert tblhdr['ZHECKSUM'] == 'abcd1234' def test_compression_header_append2(self): """ Regression test for issue https://github.com/astropy/astropy/issues/5827 """ with fits.open(self.data('comp.fits')) as hdul: header = hdul[1].header while (len(header) < 1000): header.append() # pad with grow room # Append stats to header: header.append(("Q1_OSAVG", 1, "[adu] quadrant 1 overscan mean")) header.append(("Q1_OSSTD", 1, "[adu] quadrant 1 overscan stddev")) header.append(("Q1_OSMED", 1, "[adu] quadrant 1 overscan median")) def test_compression_header_insert(self): with fits.open(self.data('comp.fits')) as hdul: imghdr = hdul[1].header tblhdr = hdul[1]._header # First try inserting a restricted keyword with pytest.warns(UserWarning, match="Keyword 'TFIELDS' is reserved") as w: imghdr.insert(1000, 'TFIELDS') assert len(w) == 1 assert 'TFIELDS' not in imghdr assert tblhdr.count('TFIELDS') == 1 # First try keyword-relative insert imghdr.insert('TELESCOP', ('OBSERVER', 'Phil Plait')) assert 'OBSERVER' in imghdr assert imghdr.index('OBSERVER') == imghdr.index('TELESCOP') - 1 assert 'OBSERVER' in tblhdr assert tblhdr.index('OBSERVER') == tblhdr.index('TELESCOP') - 1 # Next let's see if an index-relative insert winds up being # sensible idx = imghdr.index('OBSERVER') imghdr.insert('OBSERVER', ('FOO',)) assert 'FOO' in imghdr assert imghdr.index('FOO') == idx assert 'FOO' in tblhdr assert tblhdr.index('FOO') == tblhdr.index('OBSERVER') - 1 def test_compression_header_set_before_after(self): with fits.open(self.data('comp.fits')) as hdul: imghdr = hdul[1].header tblhdr = hdul[1]._header with pytest.warns(UserWarning, match="Keyword 'ZBITPIX' is reserved ") as w: imghdr.set('ZBITPIX', 77, 'asdf', after='XTENSION') assert len(w) == 1 assert 'ZBITPIX' not in imghdr assert tblhdr.count('ZBITPIX') == 1 assert tblhdr['ZBITPIX'] != 77 # Move GCOUNT before PCOUNT (not that there's any reason you'd # *want* to do that, but it's just a test...) imghdr.set('GCOUNT', 99, before='PCOUNT') assert imghdr.index('GCOUNT') == imghdr.index('PCOUNT') - 1 assert imghdr['GCOUNT'] == 99 assert tblhdr.index('ZGCOUNT') == tblhdr.index('ZPCOUNT') - 1 assert tblhdr['ZGCOUNT'] == 99 assert tblhdr.index('PCOUNT') == 5 assert tblhdr.index('GCOUNT') == 6 assert tblhdr['GCOUNT'] == 1 imghdr.set('GCOUNT', 2, after='PCOUNT') assert imghdr.index('GCOUNT') == imghdr.index('PCOUNT') + 1 assert imghdr['GCOUNT'] == 2 assert tblhdr.index('ZGCOUNT') == tblhdr.index('ZPCOUNT') + 1 assert tblhdr['ZGCOUNT'] == 2 assert tblhdr.index('PCOUNT') == 5 assert tblhdr.index('GCOUNT') == 6 assert tblhdr['GCOUNT'] == 1 def test_compression_header_append_commentary(self): """ Regression test for https://github.com/astropy/astropy/issues/2363 """ hdu = fits.CompImageHDU(np.array([0], dtype=np.int32)) hdu.header['COMMENT'] = 'hello world' assert hdu.header['COMMENT'] == ['hello world'] hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert hdul[1].header['COMMENT'] == ['hello world'] def test_compression_with_gzip_column(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/71 """ arr = np.zeros((2, 7000), dtype='float32') # The first row (which will be the first compressed tile) has a very # wide range of values that will be difficult to quantize, and should # result in use of a GZIP_COMPRESSED_DATA column arr[0] = np.linspace(0, 1, 7000) arr[1] = np.random.normal(size=7000) hdu = fits.CompImageHDU(data=arr) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: comp_hdu = hdul[1] # GZIP-compressed tile should compare exactly assert np.all(comp_hdu.data[0] == arr[0]) # The second tile uses lossy compression and may be somewhat off, # so we don't bother comparing it exactly def test_duplicate_compression_header_keywords(self): """ Regression test for https://github.com/astropy/astropy/issues/2750 Tests that the fake header (for the compressed image) can still be read even if the real header contained a duplicate ZTENSION keyword (the issue applies to any keyword specific to the compression convention, however). """ arr = np.arange(100, dtype=np.int32) hdu = fits.CompImageHDU(data=arr) header = hdu._header # append the duplicate keyword hdu._header.append(('ZTENSION', 'IMAGE')) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert header == hdul[1]._header # There's no good reason to have a duplicate keyword, but # technically it isn't invalid either :/ assert hdul[1]._header.count('ZTENSION') == 2 def test_scale_bzero_with_compressed_int_data(self): """ Regression test for https://github.com/astropy/astropy/issues/4600 and https://github.com/astropy/astropy/issues/4588 Identical to test_scale_bzero_with_int_data() but uses a compressed image. """ a = np.arange(100, 200, dtype=np.int16) hdu1 = fits.CompImageHDU(data=a.copy()) hdu2 = fits.CompImageHDU(data=a.copy()) # Previously the following line would throw a TypeError, # now it should be identical to the integer bzero case hdu1.scale('int16', bzero=99.0) hdu2.scale('int16', bzero=99) assert np.allclose(hdu1.data, hdu2.data) def test_scale_back_compressed_uint_assignment(self): """ Extend fix for #4600 to assignment to data Identical to test_scale_back_uint_assignment() but uses a compressed image. Suggested by: https://github.com/astropy/astropy/pull/4602#issuecomment-208713748 """ a = np.arange(100, 200, dtype=np.uint16) fits.CompImageHDU(a).writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits'), mode="update", scale_back=True) as hdul: hdul[1].data[:] = 0 assert np.allclose(hdul[1].data, 0) def test_compressed_header_missing_znaxis(self): a = np.arange(100, 200, dtype=np.uint16) comp_hdu = fits.CompImageHDU(a) comp_hdu._header.pop('ZNAXIS') with pytest.raises(KeyError): comp_hdu.compressed_data comp_hdu = fits.CompImageHDU(a) comp_hdu._header.pop('ZBITPIX') with pytest.raises(KeyError): comp_hdu.compressed_data def test_compressed_header_double_extname(self): """Test that a double EXTNAME with one default value does not mask the non-default value.""" with fits.open(self.data('double_ext.fits')) as hdul: hdu = hdul[1] # Raw header has 2 EXTNAME entries indices = hdu._header._keyword_indices['EXTNAME'] assert len(indices) == 2 # The non-default name should be returned. assert hdu.name == 'ccd00' assert 'EXTNAME' in hdu.header assert hdu.name == hdu.header['EXTNAME'] # There should be 1 non-default EXTNAME entries. indices = hdu.header._keyword_indices['EXTNAME'] assert len(indices) == 1 # Test header sync from property set. new_name = 'NEW_NAME' hdu.name = new_name assert hdu.name == new_name assert hdu.header['EXTNAME'] == new_name assert hdu._header['EXTNAME'] == new_name assert hdu._image_header['EXTNAME'] == new_name # Check that setting the header will change the name property. hdu.header['EXTNAME'] = 'NEW2' assert hdu.name == 'NEW2' hdul.writeto(self.temp('tmp.fits'), overwrite=True) with fits.open(self.temp('tmp.fits')) as hdul1: hdu1 = hdul1[1] assert len(hdu1._header._keyword_indices['EXTNAME']) == 1 assert hdu1.name == 'NEW2' # Check that deleting EXTNAME will and setting the name will # work properly. del hdu.header['EXTNAME'] hdu.name = 'RE-ADDED' assert hdu.name == 'RE-ADDED' with pytest.raises(TypeError): hdu.name = 42 def test_compressed_header_extname(self): """Test consistent EXTNAME / hdu name interaction.""" name = 'FOO' hdu = fits.CompImageHDU(data=np.arange(10), name=name) assert hdu._header['EXTNAME'] == name assert hdu.header['EXTNAME'] == name assert hdu.name == name name = 'BAR' hdu.name = name assert hdu._header['EXTNAME'] == name assert hdu.header['EXTNAME'] == name assert hdu.name == name assert len(hdu._header._keyword_indices['EXTNAME']) == 1 def test_compressed_header_minimal(self): """ Regression test for https://github.com/astropy/astropy/issues/11694 Tests that CompImageHDU can be initialized with a Header that contains few or no cards, and doesn't require specific cards such as 'BITPIX' or 'NAXIS'. """ fits.CompImageHDU(data=np.arange(10), header=fits.Header()) header = fits.Header({'HELLO': 'world'}) hdu = fits.CompImageHDU(data=np.arange(10), header=header) assert hdu.header['HELLO'] == 'world' @pytest.mark.parametrize( ('keyword', 'dtype', 'expected'), [('BSCALE', np.uint8, np.float32), ('BSCALE', np.int16, np.float32), ('BSCALE', np.int32, np.float64), ('BZERO', np.uint8, np.float32), ('BZERO', np.int16, np.float32), ('BZERO', np.int32, np.float64)]) def test_compressed_scaled_float(self, keyword, dtype, expected): """ If BSCALE,BZERO is set to floating point values, the image should be floating-point. https://github.com/astropy/astropy/pull/6492 Parameters ---------- keyword : `str` Keyword to set to a floating-point value to trigger floating-point pixels. dtype : `numpy.dtype` Type of original array. expected : `numpy.dtype` Expected type of uncompressed array. """ value = 1.23345 # A floating-point value hdu = fits.CompImageHDU(np.arange(0, 10, dtype=dtype)) hdu.header[keyword] = value hdu.writeto(self.temp('test.fits')) del hdu with fits.open(self.temp('test.fits')) as hdu: assert hdu[1].header[keyword] == value assert hdu[1].data.dtype == expected @pytest.mark.parametrize('dtype', (np.uint8, np.int16, np.uint16, np.int32, np.uint32)) def test_compressed_integers(self, dtype): """Test that the various integer dtypes are correctly written and read. Regression test for https://github.com/astropy/astropy/issues/9072 """ mid = np.iinfo(dtype).max // 2 data = np.arange(mid-50, mid+50, dtype=dtype) testfile = self.temp('test.fits') hdu = fits.CompImageHDU(data=data) hdu.writeto(testfile, overwrite=True) new = fits.getdata(testfile) np.testing.assert_array_equal(data, new) def test_write_non_contiguous_data(self): """ Regression test for https://github.com/astropy/astropy/issues/2150 """ orig = np.arange(100, dtype=float).reshape((10, 10), order='f') assert not orig.flags.contiguous primary = fits.PrimaryHDU() hdu = fits.CompImageHDU(orig) hdulist = fits.HDUList([primary, hdu]) hdulist.writeto(self.temp('test.fits')) actual = fits.getdata(self.temp('test.fits')) assert_equal(orig, actual) def test_slice_and_write_comp_hdu(self): """ Regression test for https://github.com/astropy/astropy/issues/9955 """ with fits.open(self.data('comp.fits')) as hdul: hdul[1].data = hdul[1].data[:200, :100] assert not hdul[1].data.flags.contiguous hdul[1].writeto(self.temp('test.fits')) with fits.open(self.data('comp.fits')) as hdul1: with fits.open(self.temp('test.fits')) as hdul2: assert_equal(hdul1[1].data[:200, :100], hdul2[1].data) def test_comphdu_bscale(tmpdir): """ Regression test for a bug that caused extensions that used BZERO and BSCALE that got turned into CompImageHDU to end up with BZERO/BSCALE before the TFIELDS. """ filename1 = tmpdir.join('3hdus.fits').strpath filename2 = tmpdir.join('3hdus_comp.fits').strpath x = np.random.random((100, 100))*100 x0 = fits.PrimaryHDU() x1 = fits.ImageHDU(np.array(x-50, dtype=int), uint=True) x1.header['BZERO'] = 20331 x1.header['BSCALE'] = 2.3 hdus = fits.HDUList([x0, x1]) hdus.writeto(filename1) # fitsverify (based on cfitsio) should fail on this file, only seeing the # first HDU. with fits.open(filename1) as hdus: hdus[1] = fits.CompImageHDU(data=hdus[1].data.astype(np.uint32), header=hdus[1].header) hdus.writeto(filename2) # open again and verify with fits.open(filename2) as hdus: hdus[1].verify('exception') def test_scale_implicit_casting(): # Regression test for an issue that occurred because Numpy now does not # allow implicit type casting during inplace operations. hdu = fits.ImageHDU(np.array([1], dtype=np.int32)) hdu.scale(bzero=1.3) def test_bzero_implicit_casting_compressed(): # Regression test for an issue that occurred because Numpy now does not # allow implicit type casting during inplace operations. Astropy is # actually not able to produce a file that triggers the failure - the # issue occurs when using unsigned integer types in the FITS file, in which # case BZERO should be 32768. But if the keyword is stored as 32768.0, then # it was possible to trigger the implicit casting error. filename = get_pkg_data_filename('data/compressed_float_bzero.fits') with fits.open(filename) as hdul: hdu = hdul[1] hdu.data def test_bzero_mishandled_info(tmpdir): # Regression test for #5507: # Calling HDUList.info() on a dataset which applies a zeropoint # from BZERO but which astropy.io.fits does not think it needs # to resize to a new dtype results in an AttributeError. filename = tmpdir.join('floatimg_with_bzero.fits').strpath hdu = fits.ImageHDU(np.zeros((10, 10))) hdu.header['BZERO'] = 10 hdu.writeto(filename, overwrite=True) with fits.open(filename) as hdul: hdul.info() def test_image_write_readonly(tmpdir): # Regression test to make sure that we can write out read-only arrays (#5512) x = np.array([1, 2, 3]) x.setflags(write=False) ghdu = fits.ImageHDU(data=x) ghdu.add_datasum() filename = tmpdir.join('test.fits').strpath ghdu.writeto(filename) with fits.open(filename) as hdulist: assert_equal(hdulist[1].data, [1, 2, 3]) # Same for compressed HDU x = np.array([1.0, 2.0, 3.0]) x.setflags(write=False) ghdu = fits.CompImageHDU(data=x) # add_datasum does not work for CompImageHDU # ghdu.add_datasum() filename = tmpdir.join('test2.fits').strpath ghdu.writeto(filename) with fits.open(filename) as hdulist: assert_equal(hdulist[1].data, [1.0, 2.0, 3.0]) def test_int8(tmp_path): '''Test for int8 support, https://github.com/astropy/astropy/issues/11995''' img = np.arange(-50, 50, dtype=np.int8).reshape(10, 10) hdu = fits.PrimaryHDU(img) hdu.writeto(tmp_path / "int8.fits") with fits.open(tmp_path / "int8.fits") as hdul: assert hdul[0].header['BITPIX'] == 8 assert hdul[0].header['BZERO'] == -128 assert hdul[0].header['BSCALE'] == 1.0 assert_equal(hdul[0].data, img) assert hdul[0].data.dtype == img.dtype