""" Special models useful for complex compound models where control is needed over which outputs from a source model are mapped to which inputs of a target model. """ # pylint: disable=invalid-name from .core import FittableModel, Model from astropy.units import Quantity __all__ = ['Mapping', 'Identity', 'UnitsMapping'] class Mapping(FittableModel): """ Allows inputs to be reordered, duplicated or dropped. Parameters ---------- mapping : tuple A tuple of integers representing indices of the inputs to this model to return and in what order to return them. See :ref:`astropy:compound-model-mappings` for more details. n_inputs : int Number of inputs; if `None` (default) then ``max(mapping) + 1`` is used (i.e. the highest input index used in the mapping). name : str, optional A human-friendly name associated with this model instance (particularly useful for identifying the individual components of a compound model). meta : dict-like Free-form metadata to associate with this model. Raises ------ TypeError Raised when number of inputs is less that ``max(mapping)``. Examples -------- >>> from astropy.modeling.models import Polynomial2D, Shift, Mapping >>> poly1 = Polynomial2D(1, c0_0=1, c1_0=2, c0_1=3) >>> poly2 = Polynomial2D(1, c0_0=1, c1_0=2.4, c0_1=2.1) >>> model = (Shift(1) & Shift(2)) | Mapping((0, 1, 0, 1)) | (poly1 & poly2) >>> model(1, 2) # doctest: +FLOAT_CMP (17.0, 14.2) """ linear = True # FittableModel is non-linear by default def __init__(self, mapping, n_inputs=None, name=None, meta=None): self._inputs = () self._outputs = () if n_inputs is None: self._n_inputs = max(mapping) + 1 else: self._n_inputs = n_inputs self._n_outputs = len(mapping) super().__init__(name=name, meta=meta) self.inputs = tuple('x' + str(idx) for idx in range(self._n_inputs)) self.outputs = tuple('x' + str(idx) for idx in range(self._n_outputs)) self._mapping = mapping self._input_units_strict = {key: False for key in self._inputs} self._input_units_allow_dimensionless = {key: False for key in self._inputs} @property def n_inputs(self): return self._n_inputs @property def n_outputs(self): return self._n_outputs @property def mapping(self): """Integers representing indices of the inputs.""" return self._mapping def __repr__(self): if self.name is None: return f'' return f'' def evaluate(self, *args): if len(args) != self.n_inputs: name = self.name if self.name is not None else "Mapping" raise TypeError(f'{name} expects {self.n_inputs} inputs; got {len(args)}') result = tuple(args[idx] for idx in self._mapping) if self.n_outputs == 1: return result[0] return result @property def inverse(self): """ A `Mapping` representing the inverse of the current mapping. Raises ------ `NotImplementedError` An inverse does no exist on mappings that drop some of its inputs (there is then no way to reconstruct the inputs that were dropped). """ try: mapping = tuple(self.mapping.index(idx) for idx in range(self.n_inputs)) except ValueError: raise NotImplementedError( "Mappings such as {} that drop one or more of their inputs " "are not invertible at this time.".format(self.mapping)) inv = self.__class__(mapping) inv._inputs = self._outputs inv._outputs = self._inputs inv._n_inputs = len(inv._inputs) inv._n_outputs = len(inv._outputs) return inv class Identity(Mapping): """ Returns inputs unchanged. This class is useful in compound models when some of the inputs must be passed unchanged to the next model. Parameters ---------- n_inputs : int Specifies the number of inputs this identity model accepts. name : str, optional A human-friendly name associated with this model instance (particularly useful for identifying the individual components of a compound model). meta : dict-like Free-form metadata to associate with this model. Examples -------- Transform ``(x, y)`` by a shift in x, followed by scaling the two inputs:: >>> from astropy.modeling.models import (Polynomial1D, Shift, Scale, ... Identity) >>> model = (Shift(1) & Identity(1)) | Scale(1.2) & Scale(2) >>> model(1,1) # doctest: +FLOAT_CMP (2.4, 2.0) >>> model.inverse(2.4, 2) # doctest: +FLOAT_CMP (1.0, 1.0) """ linear = True # FittableModel is non-linear by default def __init__(self, n_inputs, name=None, meta=None): mapping = tuple(range(n_inputs)) super().__init__(mapping, name=name, meta=meta) def __repr__(self): if self.name is None: return f'' return f'' @property def inverse(self): """ The inverse transformation. In this case of `Identity`, ``self.inverse is self``. """ return self class UnitsMapping(Model): """ Mapper that operates on the units of the input, first converting to canonical units, then assigning new units without further conversion. Used by Model.coerce_units to support units on otherwise unitless models such as Polynomial1D. Parameters ---------- mapping : tuple A tuple of (input_unit, output_unit) pairs, one per input, matched to the inputs by position. The first element of the each pair is the unit that the model will accept (specify ``dimensionless_unscaled`` to accept dimensionless input). The second element is the unit that the model will return. Specify ``dimensionless_unscaled`` to return dimensionless Quantity, and `None` to return raw values without Quantity. input_units_equivalencies : dict, optional Default equivalencies to apply to input values. If set, this should be a dictionary where each key is a string that corresponds to one of the model inputs. input_units_allow_dimensionless : dict or bool, optional Allow dimensionless input. If this is True, input values to evaluate will gain the units specified in input_units. If this is a dictionary then it should map input name to a bool to allow dimensionless numbers for that input. name : str, optional A human-friendly name associated with this model instance (particularly useful for identifying the individual components of a compound model). meta : dict-like, optional Free-form metadata to associate with this model. Examples -------- Wrapping a unitless model to require and convert units: >>> from astropy.modeling.models import Polynomial1D, UnitsMapping >>> from astropy import units as u >>> poly = Polynomial1D(1, c0=1, c1=2) >>> model = UnitsMapping(((u.m, None),)) | poly >>> model = model | UnitsMapping(((None, u.s),)) >>> model(u.Quantity(10, u.m)) # doctest: +FLOAT_CMP >>> model(u.Quantity(1000, u.cm)) # doctest: +FLOAT_CMP >>> model(u.Quantity(10, u.cm)) # doctest: +FLOAT_CMP Wrapping a unitless model but still permitting unitless input: >>> from astropy.modeling.models import Polynomial1D, UnitsMapping >>> from astropy import units as u >>> poly = Polynomial1D(1, c0=1, c1=2) >>> model = UnitsMapping(((u.m, None),), input_units_allow_dimensionless=True) | poly >>> model = model | UnitsMapping(((None, u.s),)) >>> model(u.Quantity(10, u.m)) # doctest: +FLOAT_CMP >>> model(10) # doctest: +FLOAT_CMP """ def __init__( self, mapping, input_units_equivalencies=None, input_units_allow_dimensionless=False, name=None, meta=None ): self._mapping = mapping none_mapping_count = len([m for m in mapping if m[-1] is None]) if none_mapping_count > 0 and none_mapping_count != len(mapping): raise ValueError("If one return unit is None, then all must be None") # These attributes are read and handled by Model self._input_units_strict = True self.input_units_equivalencies = input_units_equivalencies self._input_units_allow_dimensionless = input_units_allow_dimensionless super().__init__(name=name, meta=meta) # Can't invoke this until after super().__init__, since # we need self.inputs and self.outputs to be populated. self._rebuild_units() def _rebuild_units(self): self._input_units = {input_name: input_unit for input_name, (input_unit, _) in zip(self.inputs, self.mapping)} @property def n_inputs(self): return len(self._mapping) @property def n_outputs(self): return len(self._mapping) @property def inputs(self): return super().inputs @inputs.setter def inputs(self, value): super(UnitsMapping, self.__class__).inputs.fset(self, value) self._rebuild_units() @property def outputs(self): return super().outputs @outputs.setter def outputs(self, value): super(UnitsMapping, self.__class__).outputs.fset(self, value) self._rebuild_units() @property def input_units(self): return self._input_units @property def mapping(self): return self._mapping def evaluate(self, *args): result = [] for arg, (_, return_unit) in zip(args, self.mapping): if isinstance(arg, Quantity): value = arg.value else: value = arg if return_unit is None: result.append(value) else: result.append(Quantity(value, return_unit, subok=True)) if self.n_outputs == 1: return result[0] else: return tuple(result) def __repr__(self): if self.name is None: return f"" else: return f""