# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains models representing polynomials and polynomial series. """ # pylint: disable=invalid-name import numpy as np from astropy.utils import indent, check_broadcast from .core import FittableModel, Model from .functional_models import Shift from .parameters import Parameter from .utils import poly_map_domain, comb, _validate_domain_window __all__ = [ 'Chebyshev1D', 'Chebyshev2D', 'Hermite1D', 'Hermite2D', 'InverseSIP', 'Legendre1D', 'Legendre2D', 'Polynomial1D', 'Polynomial2D', 'SIP', 'OrthoPolynomialBase', 'PolynomialModel' ] class PolynomialBase(FittableModel): """ Base class for all polynomial-like models with an arbitrary number of parameters in the form of coefficients. In this case Parameter instances are returned through the class's ``__getattr__`` rather than through class descriptors. """ # Default _param_names list; this will be filled in by the implementation's # __init__ _param_names = () linear = True col_fit_deriv = False @property def param_names(self): """Coefficient names generated based on the model's polynomial degree and number of dimensions. Subclasses should implement this to return parameter names in the desired format. On most `Model` classes this is a class attribute, but for polynomial models it is an instance attribute since each polynomial model instance can have different parameters depending on the degree of the polynomial and the number of dimensions, for example. """ return self._param_names class PolynomialModel(PolynomialBase): """ Base class for polynomial models. Its main purpose is to determine how many coefficients are needed based on the polynomial order and dimension and to provide their default values, names and ordering. """ def __init__(self, degree, n_models=None, model_set_axis=None, name=None, meta=None, **params): self._degree = degree self._order = self.get_num_coeff(self.n_inputs) self._param_names = self._generate_coeff_names(self.n_inputs) if n_models: if model_set_axis is None: model_set_axis = 0 minshape = (1,) * model_set_axis + (n_models,) else: minshape = () for param_name in self._param_names: self._parameters_[param_name] = \ Parameter(param_name, default=np.zeros(minshape)) super().__init__( n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) @property def degree(self): """Degree of polynomial.""" return self._degree def get_num_coeff(self, ndim): """ Return the number of coefficients in one parameter set """ if self.degree < 0: raise ValueError("Degree of polynomial must be positive or null") # deg+1 is used to account for the difference between iraf using # degree and numpy using exact degree if ndim != 1: nmixed = comb(self.degree, ndim) else: nmixed = 0 numc = self.degree * ndim + nmixed + 1 return numc def _invlex(self): c = [] lencoeff = self.degree + 1 for i in range(lencoeff): for j in range(lencoeff): if i + j <= self.degree: c.append((j, i)) return c[::-1] def _generate_coeff_names(self, ndim): names = [] if ndim == 1: for n in range(self._order): names.append(f'c{n}') else: for i in range(self.degree + 1): names.append(f'c{i}_{0}') for i in range(1, self.degree + 1): names.append(f'c{0}_{i}') for i in range(1, self.degree): for j in range(1, self.degree): if i + j < self.degree + 1: names.append(f'c{i}_{j}') return tuple(names) class _PolyDomainWindow1D(PolynomialModel): """ This class sets ``domain`` and ``window`` of 1D polynomials. """ def __init__(self, degree, domain=None, window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( degree, n_models, model_set_axis, name=name, meta=meta, **params) self._set_default_domain_window(domain, window) @property def window(self): return self._window @window.setter def window(self, val): self._window = _validate_domain_window(val) @property def domain(self): return self._domain @domain.setter def domain(self, val): self._domain = _validate_domain_window(val) def _set_default_domain_window(self, domain, window): """ This method sets the ``domain`` and ``window`` attributes on 1D subclasses. """ self._default_domain_window = {'domain': None, 'window': (-1, 1) } self.window = window or (-1, 1) self.domain = domain def __repr__(self): return self._format_repr([self.degree], kwargs={'domain': self.domain, 'window': self.window}, defaults=self._default_domain_window ) def __str__(self): return self._format_str([('Degree', self.degree), ('Domain', self.domain), ('Window', self.window)], self._default_domain_window) class OrthoPolynomialBase(PolynomialBase): """ This is a base class for the 2D Chebyshev and Legendre models. The polynomials implemented here require a maximum degree in x and y. For explanation of ``x_domain``, ``y_domain``, ```x_window`` and ```y_window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : tuple or None, optional domain of the x independent variable x_window : tuple or None, optional range of the x independent variable y_domain : tuple or None, optional domain of the y independent variable y_window : tuple or None, optional range of the y independent variable **params : dict {keyword: value} pairs, representing {parameter_name: value} """ n_inputs = 2 n_outputs = 1 def __init__(self, x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): self.x_degree = x_degree self.y_degree = y_degree self._order = self.get_num_coeff() # Set the ``x/y_domain`` and ``x/y_wndow`` attributes in subclasses. self._default_domain_window = { 'x_window': (-1, 1), 'y_window': (-1, 1), 'x_domain': None, 'y_domain': None } self.x_window = x_window or self._default_domain_window['x_window'] self.y_window = y_window or self._default_domain_window['y_window'] self.x_domain = x_domain self.y_domain = y_domain self._param_names = self._generate_coeff_names() if n_models: if model_set_axis is None: model_set_axis = 0 minshape = (1,) * model_set_axis + (n_models,) else: minshape = () for param_name in self._param_names: self._parameters_[param_name] = \ Parameter(param_name, default=np.zeros(minshape)) super().__init__( n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) @property def x_domain(self): return self._x_domain @x_domain.setter def x_domain(self, val): self._x_domain = _validate_domain_window(val) @property def y_domain(self): return self._y_domain @y_domain.setter def y_domain(self, val): self._y_domain = _validate_domain_window(val) @property def x_window(self): return self._x_window @x_window.setter def x_window(self, val): self._x_window = _validate_domain_window(val) @property def y_window(self): return self._y_window @y_window.setter def y_window(self, val): self._y_window = _validate_domain_window(val) def __repr__(self): return self._format_repr([self.x_degree, self.y_degree], kwargs={'x_domain': self.x_domain, 'y_domain': self.y_domain, 'x_window': self.x_window, 'y_window': self.y_window}, defaults=self._default_domain_window) def __str__(self): return self._format_str( [('X_Degree', self.x_degree), ('Y_Degree', self.y_degree), ('X_Domain', self.x_domain), ('Y_Domain', self.y_domain), ('X_Window', self.x_window), ('Y_Window', self.y_window)], self._default_domain_window) def get_num_coeff(self): """ Determine how many coefficients are needed Returns ------- numc : int number of coefficients """ if self.x_degree < 0 or self.y_degree < 0: raise ValueError("Degree of polynomial must be positive or null") return (self.x_degree + 1) * (self.y_degree + 1) def _invlex(self): # TODO: This is a very slow way to do this; fix it and related methods # like _alpha c = [] xvar = np.arange(self.x_degree + 1) yvar = np.arange(self.y_degree + 1) for j in yvar: for i in xvar: c.append((i, j)) return np.array(c[::-1]) def invlex_coeff(self, coeffs): invlex_coeffs = [] xvar = np.arange(self.x_degree + 1) yvar = np.arange(self.y_degree + 1) for j in yvar: for i in xvar: name = f'c{i}_{j}' coeff = coeffs[self.param_names.index(name)] invlex_coeffs.append(coeff) return np.array(invlex_coeffs[::-1]) def _alpha(self): invlexdeg = self._invlex() invlexdeg[:, 1] = invlexdeg[:, 1] + self.x_degree + 1 nx = self.x_degree + 1 ny = self.y_degree + 1 alpha = np.zeros((ny * nx + 3, ny + nx)) for n in range(len(invlexdeg)): alpha[n][invlexdeg[n]] = [1, 1] alpha[-2, 0] = 1 alpha[-3, nx] = 1 return alpha def imhorner(self, x, y, coeff): _coeff = list(coeff) _coeff.extend([0, 0, 0]) alpha = self._alpha() r0 = _coeff[0] nalpha = len(alpha) karr = np.diff(alpha, axis=0) kfunc = self._fcache(x, y) x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 nterms = x_terms + y_terms for n in range(1, nterms + 1 + 3): setattr(self, 'r' + str(n), 0.) for n in range(1, nalpha): k = karr[n - 1].nonzero()[0].max() + 1 rsum = 0 for i in range(1, k + 1): rsum = rsum + getattr(self, 'r' + str(i)) val = kfunc[k - 1] * (r0 + rsum) setattr(self, 'r' + str(k), val) r0 = _coeff[n] for i in range(1, k): setattr(self, 'r' + str(i), 0.) result = r0 for i in range(1, nterms + 1 + 3): result = result + getattr(self, 'r' + str(i)) return result def _generate_coeff_names(self): names = [] for j in range(self.y_degree + 1): for i in range(self.x_degree + 1): names.append(f'c{i}_{j}') return tuple(names) def _fcache(self, x, y): """ Computation and store the individual functions. To be implemented by subclasses" """ raise NotImplementedError("Subclasses should implement this") def evaluate(self, x, y, *coeffs): if self.x_domain is not None: x = poly_map_domain(x, self.x_domain, self.x_window) if self.y_domain is not None: y = poly_map_domain(y, self.y_domain, self.y_window) invcoeff = self.invlex_coeff(coeffs) return self.imhorner(x, y, invcoeff) def prepare_inputs(self, x, y, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, y, **kwargs) x, y = inputs if x.shape != y.shape: raise ValueError("Expected input arrays to have the same shape") return (x, y), broadcasted_shapes class Chebyshev1D(_PolyDomainWindow1D): r""" Univariate Chebyshev series. It is defined as: .. math:: P(x) = \sum_{i=0}^{i=n}C_{i} * T_{i}(x) where ``T_i(x)`` is the corresponding Chebyshev polynomial of the 1st kind. For explanation of ```domain``, and ``window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- degree : int degree of the series domain : tuple or None, optional window : tuple or None, optional If None, it is set to (-1, 1) Fitters will remap the domain to this window. **params : dict keyword : value pairs, representing parameter_name: value Notes ----- This model does not support the use of units/quantities, because each term in the sum of Chebyshev polynomials is a polynomial in x - since the coefficients within each Chebyshev polynomial are fixed, we can't use quantities for x since the units would not be compatible. For example, the third Chebyshev polynomial (T2) is 2x^2-1, but if x was specified with units, 2x^2 and -1 would have incompatible units. """ n_inputs = 1 n_outputs = 1 _separable = True def __init__(self, degree, domain=None, window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__(degree, domain=domain, window=window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def fit_deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ x = np.array(x, dtype=float, copy=False, ndmin=1) v = np.empty((self.degree + 1,) + x.shape, dtype=x.dtype) v[0] = 1 if self.degree > 0: x2 = 2 * x v[1] = x for i in range(2, self.degree + 1): v[i] = v[i - 1] * x2 - v[i - 2] return np.rollaxis(v, 0, v.ndim) def prepare_inputs(self, x, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, **kwargs) x = inputs[0] return (x,), broadcasted_shapes def evaluate(self, x, *coeffs): if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.clenshaw(x, coeffs) @staticmethod def clenshaw(x, coeffs): """Evaluates the polynomial using Clenshaw's algorithm.""" if len(coeffs) == 1: c0 = coeffs[0] c1 = 0 elif len(coeffs) == 2: c0 = coeffs[0] c1 = coeffs[1] else: x2 = 2 * x c0 = coeffs[-2] c1 = coeffs[-1] for i in range(3, len(coeffs) + 1): tmp = c0 c0 = coeffs[-i] - c1 c1 = tmp + c1 * x2 return c0 + c1 * x class Hermite1D(_PolyDomainWindow1D): r""" Univariate Hermite series. It is defined as: .. math:: P(x) = \sum_{i=0}^{i=n}C_{i} * H_{i}(x) where ``H_i(x)`` is the corresponding Hermite polynomial ("Physicist's kind"). For explanation of ``domain``, and ``window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- degree : int degree of the series domain : tuple or None, optional window : tuple or None, optional If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword : value pairs, representing parameter_name: value Notes ----- This model does not support the use of units/quantities, because each term in the sum of Hermite polynomials is a polynomial in x - since the coefficients within each Hermite polynomial are fixed, we can't use quantities for x since the units would not be compatible. For example, the third Hermite polynomial (H2) is 4x^2-2, but if x was specified with units, 4x^2 and -2 would have incompatible units. """ n_inputs = 1 n_outputs = 1 _separable = True def __init__(self, degree, domain=None, window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( degree, domain, window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def fit_deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ x = np.array(x, dtype=float, copy=False, ndmin=1) v = np.empty((self.degree + 1,) + x.shape, dtype=x.dtype) v[0] = 1 if self.degree > 0: x2 = 2 * x v[1] = 2 * x for i in range(2, self.degree + 1): v[i] = x2 * v[i - 1] - 2 * (i - 1) * v[i - 2] return np.rollaxis(v, 0, v.ndim) def prepare_inputs(self, x, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, **kwargs) x = inputs[0] return (x,), broadcasted_shapes def evaluate(self, x, *coeffs): if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.clenshaw(x, coeffs) @staticmethod def clenshaw(x, coeffs): x2 = x * 2 if len(coeffs) == 1: c0 = coeffs[0] c1 = 0 elif len(coeffs) == 2: c0 = coeffs[0] c1 = coeffs[1] else: nd = len(coeffs) c0 = coeffs[-2] c1 = coeffs[-1] for i in range(3, len(coeffs) + 1): temp = c0 nd = nd - 1 c0 = coeffs[-i] - c1 * (2 * (nd - 1)) c1 = temp + c1 * x2 return c0 + c1 * x2 class Hermite2D(OrthoPolynomialBase): r""" Bivariate Hermite series. It is defined as .. math:: P_{nm}(x,y) = \sum_{n,m=0}^{n=d,m=d}C_{nm} H_n(x) H_m(y) where ``H_n(x)`` and ``H_m(y)`` are Hermite polynomials. For explanation of ``x_domain``, ``y_domain``, ``x_window`` and ``y_window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : tuple or None, optional domain of the x independent variable y_domain : tuple or None, optional domain of the y independent variable x_window : tuple or None, optional range of the x independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window y_window : tuple or None, optional range of the y independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword: value pairs, representing parameter_name: value Notes ----- This model does not support the use of units/quantities, because each term in the sum of Hermite polynomials is a polynomial in x and/or y - since the coefficients within each Hermite polynomial are fixed, we can't use quantities for x and/or y since the units would not be compatible. For example, the third Hermite polynomial (H2) is 4x^2-2, but if x was specified with units, 4x^2 and -2 would have incompatible units. """ _separable = False def __init__(self, x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def _fcache(self, x, y): """ Calculate the individual Hermite functions once and store them in a dictionary to be reused. """ x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 kfunc = {} kfunc[0] = np.ones(x.shape) kfunc[1] = 2 * x.copy() kfunc[x_terms] = np.ones(y.shape) kfunc[x_terms + 1] = 2 * y.copy() for n in range(2, x_terms): kfunc[n] = 2 * x * kfunc[n - 1] - 2 * (n - 1) * kfunc[n - 2] for n in range(x_terms + 2, x_terms + y_terms): kfunc[n] = 2 * y * kfunc[n - 1] - 2 * (n - 1) * kfunc[n - 2] return kfunc def fit_deriv(self, x, y, *params): """ Derivatives with respect to the coefficients. This is an array with Hermite polynomials: .. math:: H_{x_0}H_{y_0}, H_{x_1}H_{y_0}...H_{x_n}H_{y_0}...H_{x_n}H_{y_m} Parameters ---------- x : ndarray input y : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.shape != y.shape: raise ValueError("x and y must have the same shape") x = x.flatten() y = y.flatten() x_deriv = self._hermderiv1d(x, self.x_degree + 1).T y_deriv = self._hermderiv1d(y, self.y_degree + 1).T ij = [] for i in range(self.y_degree + 1): for j in range(self.x_degree + 1): ij.append(x_deriv[j] * y_deriv[i]) v = np.array(ij) return v.T def _hermderiv1d(self, x, deg): """ Derivative of 1D Hermite series """ x = np.array(x, dtype=float, copy=False, ndmin=1) d = np.empty((deg + 1, len(x)), dtype=x.dtype) d[0] = x * 0 + 1 if deg > 0: x2 = 2 * x d[1] = x2 for i in range(2, deg + 1): d[i] = x2 * d[i - 1] - 2 * (i - 1) * d[i - 2] return np.rollaxis(d, 0, d.ndim) class Legendre1D(_PolyDomainWindow1D): r""" Univariate Legendre series. It is defined as: .. math:: P(x) = \sum_{i=0}^{i=n}C_{i} * L_{i}(x) where ``L_i(x)`` is the corresponding Legendre polynomial. For explanation of ``domain``, and ``window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- degree : int degree of the series domain : tuple or None, optional window : tuple or None, optional If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword: value pairs, representing parameter_name: value Notes ----- This model does not support the use of units/quantities, because each term in the sum of Legendre polynomials is a polynomial in x - since the coefficients within each Legendre polynomial are fixed, we can't use quantities for x since the units would not be compatible. For example, the third Legendre polynomial (P2) is 1.5x^2-0.5, but if x was specified with units, 1.5x^2 and -0.5 would have incompatible units. """ n_inputs = 1 n_outputs = 1 _separable = True def __init__(self, degree, domain=None, window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( degree, domain, window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def prepare_inputs(self, x, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, **kwargs) x = inputs[0] return (x,), broadcasted_shapes def evaluate(self, x, *coeffs): if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.clenshaw(x, coeffs) def fit_deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ x = np.array(x, dtype=float, copy=False, ndmin=1) v = np.empty((self.degree + 1,) + x.shape, dtype=x.dtype) v[0] = 1 if self.degree > 0: v[1] = x for i in range(2, self.degree + 1): v[i] = (v[i - 1] * x * (2 * i - 1) - v[i - 2] * (i - 1)) / i return np.rollaxis(v, 0, v.ndim) @staticmethod def clenshaw(x, coeffs): if len(coeffs) == 1: c0 = coeffs[0] c1 = 0 elif len(coeffs) == 2: c0 = coeffs[0] c1 = coeffs[1] else: nd = len(coeffs) c0 = coeffs[-2] c1 = coeffs[-1] for i in range(3, len(coeffs) + 1): tmp = c0 nd = nd - 1 c0 = coeffs[-i] - (c1 * (nd - 1)) / nd c1 = tmp + (c1 * x * (2 * nd - 1)) / nd return c0 + c1 * x class Polynomial1D(_PolyDomainWindow1D): r""" 1D Polynomial model. It is defined as: .. math:: P = \sum_{i=0}^{i=n}C_{i} * x^{i} For explanation of ``domain``, and ``window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- degree : int degree of the series domain : tuple or None, optional If None, it is set to (-1, 1) window : tuple or None, optional If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword: value pairs, representing parameter_name: value """ n_inputs = 1 n_outputs = 1 _separable = True def __init__(self, degree, domain=None, window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( degree, domain, window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) # Set domain separately because it's different from # the orthogonal polynomials. self._default_domain_window = {'domain': (-1, 1), 'window': (-1, 1), } self.domain = domain or self._default_domain_window['domain'] self.window = window or self._default_domain_window['window'] def prepare_inputs(self, x, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, **kwargs) x = inputs[0] return (x,), broadcasted_shapes def evaluate(self, x, *coeffs): if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.horner(x, coeffs) def fit_deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ v = np.empty((self.degree + 1,) + x.shape, dtype=float) v[0] = 1 if self.degree > 0: v[1] = x for i in range(2, self.degree + 1): v[i] = v[i - 1] * x return np.rollaxis(v, 0, v.ndim) @staticmethod def horner(x, coeffs): if len(coeffs) == 1: c0 = coeffs[-1] * np.ones_like(x, subok=False) else: c0 = coeffs[-1] for i in range(2, len(coeffs) + 1): c0 = coeffs[-i] + c0 * x return c0 @property def input_units(self): if self.degree == 0 or self.c1.unit is None: return None else: return {self.inputs[0]: self.c0.unit / self.c1.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): mapping = {} for i in range(self.degree + 1): par = getattr(self, f'c{i}') mapping[par.name] = outputs_unit[self.outputs[0]] / inputs_unit[self.inputs[0]] ** i return mapping class Polynomial2D(PolynomialModel): r""" 2D Polynomial model. Represents a general polynomial of degree n: .. math:: P(x,y) = c_{00} + c_{10}x + ...+ c_{n0}x^n + c_{01}y + ...+ c_{0n}y^n + c_{11}xy + c_{12}xy^2 + ... + c_{1(n-1)}xy^{n-1}+ ... + c_{(n-1)1}x^{n-1}y For explanation of ``x_domain``, ``y_domain``, ``x_window`` and ``y_window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- degree : int Polynomial degree: largest sum of exponents (:math:`i + j`) of variables in each monomial term of the form :math:`x^i y^j`. The number of terms in a 2D polynomial of degree ``n`` is given by binomial coefficient :math:`C(n + 2, 2) = (n + 2)! / (2!\,n!) = (n + 1)(n + 2) / 2`. x_domain : tuple or None, optional domain of the x independent variable If None, it is set to (-1, 1) y_domain : tuple or None, optional domain of the y independent variable If None, it is set to (-1, 1) x_window : tuple or None, optional range of the x independent variable If None, it is set to (-1, 1) Fitters will remap the x_domain to x_window y_window : tuple or None, optional range of the y independent variable If None, it is set to (-1, 1) Fitters will remap the y_domain to y_window **params : dict keyword: value pairs, representing parameter_name: value """ n_inputs = 2 n_outputs = 1 _separable = False def __init__(self, degree, x_domain=None, y_domain=None, x_window=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( degree, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) self._default_domain_window = { 'x_domain': (-1, 1), 'y_domain': (-1, 1), 'x_window': (-1, 1), 'y_window': (-1, 1) } self.x_domain = x_domain or self._default_domain_window['x_domain'] self.y_domain = y_domain or self._default_domain_window['y_domain'] self.x_window = x_window or self._default_domain_window['x_window'] self.y_window = y_window or self._default_domain_window['y_window'] def prepare_inputs(self, x, y, **kwargs): inputs, broadcasted_shapes = super().prepare_inputs(x, y, **kwargs) x, y = inputs return (x, y), broadcasted_shapes def evaluate(self, x, y, *coeffs): if self.x_domain is not None: x = poly_map_domain(x, self.x_domain, self.x_window) if self.y_domain is not None: y = poly_map_domain(y, self.y_domain, self.y_window) invcoeff = self.invlex_coeff(coeffs) result = self.multivariate_horner(x, y, invcoeff) # Special case for degree==0 to ensure that the shape of the output is # still as expected by the broadcasting rules, even though the x and y # inputs are not used in the evaluation if self.degree == 0: output_shape = check_broadcast(np.shape(coeffs[0]), x.shape) if output_shape: new_result = np.empty(output_shape) new_result[:] = result result = new_result return result def __repr__(self): return self._format_repr([self.degree], kwargs={'x_domain': self.x_domain, 'y_domain': self.y_domain, 'x_window': self.x_window, 'y_window': self.y_window}, defaults=self._default_domain_window) def __str__(self): return self._format_str([('Degree', self.degree), ('X_Domain', self.x_domain), ('Y_Domain', self.y_domain), ('X_Window', self.x_window), ('Y_Window', self.y_window)], self._default_domain_window) def fit_deriv(self, x, y, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input y : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.ndim == 2: x = x.flatten() if y.ndim == 2: y = y.flatten() if x.size != y.size: raise ValueError('Expected x and y to be of equal size') designx = x[:, None] ** np.arange(self.degree + 1) designy = y[:, None] ** np.arange(1, self.degree + 1) designmixed = [] for i in range(1, self.degree): for j in range(1, self.degree): if i + j <= self.degree: designmixed.append((x ** i) * (y ** j)) designmixed = np.array(designmixed).T if designmixed.any(): v = np.hstack([designx, designy, designmixed]) else: v = np.hstack([designx, designy]) return v def invlex_coeff(self, coeffs): invlex_coeffs = [] lencoeff = range(self.degree + 1) for i in lencoeff: for j in lencoeff: if i + j <= self.degree: name = f'c{j}_{i}' coeff = coeffs[self.param_names.index(name)] invlex_coeffs.append(coeff) return invlex_coeffs[::-1] def multivariate_horner(self, x, y, coeffs): """ Multivariate Horner's scheme Parameters ---------- x, y : array coeffs : array Coefficients in inverse lexical order. """ alpha = self._invlex() r0 = coeffs[0] r1 = r0 * 0.0 r2 = r0 * 0.0 karr = np.diff(alpha, axis=0) for n in range(len(karr)): if karr[n, 1] != 0: r2 = y * (r0 + r1 + r2) r1 = np.zeros_like(coeffs[0], subok=False) else: r1 = x * (r0 + r1) r0 = coeffs[n + 1] return r0 + r1 + r2 @property def input_units(self): if self.degree == 0 or (self.c1_0.unit is None and self.c0_1.unit is None): return None return {self.inputs[0]: self.c0_0.unit / self.c1_0.unit, self.inputs[1]: self.c0_0.unit / self.c0_1.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): mapping = {} for i in range(self.degree + 1): for j in range(self.degree + 1): if i + j > 2: continue par = getattr(self, f'c{i}_{j}') mapping[par.name] = outputs_unit[self.outputs[0]] / inputs_unit[self.inputs[0]] ** i / inputs_unit[self.inputs[1]] ** j # noqa return mapping @property def x_domain(self): return self._x_domain @x_domain.setter def x_domain(self, val): self._x_domain = _validate_domain_window(val) @property def y_domain(self): return self._y_domain @y_domain.setter def y_domain(self, val): self._y_domain = _validate_domain_window(val) @property def x_window(self): return self._x_window @x_window.setter def x_window(self, val): self._x_window = _validate_domain_window(val) @property def y_window(self): return self._y_window @y_window.setter def y_window(self, val): self._y_window = _validate_domain_window(val) class Chebyshev2D(OrthoPolynomialBase): r""" Bivariate Chebyshev series.. It is defined as .. math:: P_{nm}(x,y) = \sum_{n,m=0}^{n=d,m=d}C_{nm} T_n(x ) T_m(y) where ``T_n(x)`` and ``T_m(y)`` are Chebyshev polynomials of the first kind. For explanation of ``x_domain``, ``y_domain``, ``x_window`` and ``y_window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : tuple or None, optional domain of the x independent variable y_domain : tuple or None, optional domain of the y independent variable x_window : tuple or None, optional range of the x independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window y_window : tuple or None, optional range of the y independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword: value pairs, representing parameter_name: value Notes ----- This model does not support the use of units/quantities, because each term in the sum of Chebyshev polynomials is a polynomial in x and/or y - since the coefficients within each Chebyshev polynomial are fixed, we can't use quantities for x and/or y since the units would not be compatible. For example, the third Chebyshev polynomial (T2) is 2x^2-1, but if x was specified with units, 2x^2 and -1 would have incompatible units. """ _separable = False def __init__(self, x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def _fcache(self, x, y): """ Calculate the individual Chebyshev functions once and store them in a dictionary to be reused. """ x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 kfunc = {} kfunc[0] = np.ones(x.shape) kfunc[1] = x.copy() kfunc[x_terms] = np.ones(y.shape) kfunc[x_terms + 1] = y.copy() for n in range(2, x_terms): kfunc[n] = 2 * x * kfunc[n - 1] - kfunc[n - 2] for n in range(x_terms + 2, x_terms + y_terms): kfunc[n] = 2 * y * kfunc[n - 1] - kfunc[n - 2] return kfunc def fit_deriv(self, x, y, *params): """ Derivatives with respect to the coefficients. This is an array with Chebyshev polynomials: .. math:: T_{x_0}T_{y_0}, T_{x_1}T_{y_0}...T_{x_n}T_{y_0}...T_{x_n}T_{y_m} Parameters ---------- x : ndarray input y : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.shape != y.shape: raise ValueError("x and y must have the same shape") x = x.flatten() y = y.flatten() x_deriv = self._chebderiv1d(x, self.x_degree + 1).T y_deriv = self._chebderiv1d(y, self.y_degree + 1).T ij = [] for i in range(self.y_degree + 1): for j in range(self.x_degree + 1): ij.append(x_deriv[j] * y_deriv[i]) v = np.array(ij) return v.T def _chebderiv1d(self, x, deg): """ Derivative of 1D Chebyshev series """ x = np.array(x, dtype=float, copy=False, ndmin=1) d = np.empty((deg + 1, len(x)), dtype=x.dtype) d[0] = x * 0 + 1 if deg > 0: x2 = 2 * x d[1] = x for i in range(2, deg + 1): d[i] = d[i - 1] * x2 - d[i - 2] return np.rollaxis(d, 0, d.ndim) class Legendre2D(OrthoPolynomialBase): r""" Bivariate Legendre series. Defined as: .. math:: P_{n_m}(x,y) = \sum_{n,m=0}^{n=d,m=d}C_{nm} L_n(x ) L_m(y) where ``L_n(x)`` and ``L_m(y)`` are Legendre polynomials. For explanation of ``x_domain``, ``y_domain``, ``x_window`` and ``y_window`` see :ref:`Notes regarding usage of domain and window `. Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : tuple or None, optional domain of the x independent variable y_domain : tuple or None, optional domain of the y independent variable x_window : tuple or None, optional range of the x independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window y_window : tuple or None, optional range of the y independent variable If None, it is set to (-1, 1) Fitters will remap the domain to this window **params : dict keyword: value pairs, representing parameter_name: value Notes ----- Model formula: .. math:: P(x) = \sum_{i=0}^{i=n}C_{i} * L_{i}(x) where ``L_{i}`` is the corresponding Legendre polynomial. This model does not support the use of units/quantities, because each term in the sum of Legendre polynomials is a polynomial in x - since the coefficients within each Legendre polynomial are fixed, we can't use quantities for x since the units would not be compatible. For example, the third Legendre polynomial (P2) is 1.5x^2-0.5, but if x was specified with units, 1.5x^2 and -0.5 would have incompatible units. """ _separable = False def __init__(self, x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params): super().__init__( x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def _fcache(self, x, y): """ Calculate the individual Legendre functions once and store them in a dictionary to be reused. """ x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 kfunc = {} kfunc[0] = np.ones(x.shape) kfunc[1] = x.copy() kfunc[x_terms] = np.ones(y.shape) kfunc[x_terms + 1] = y.copy() for n in range(2, x_terms): kfunc[n] = (((2 * (n - 1) + 1) * x * kfunc[n - 1] - (n - 1) * kfunc[n - 2]) / n) for n in range(2, y_terms): kfunc[n + x_terms] = ((2 * (n - 1) + 1) * y * kfunc[n + x_terms - 1] - (n - 1) * kfunc[n + x_terms - 2]) / (n) return kfunc def fit_deriv(self, x, y, *params): """ Derivatives with respect to the coefficients. This is an array with Legendre polynomials: Lx0Ly0 Lx1Ly0...LxnLy0...LxnLym Parameters ---------- x : ndarray input y : ndarray input *params throw-away parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.shape != y.shape: raise ValueError("x and y must have the same shape") x = x.flatten() y = y.flatten() x_deriv = self._legendderiv1d(x, self.x_degree + 1).T y_deriv = self._legendderiv1d(y, self.y_degree + 1).T ij = [] for i in range(self.y_degree + 1): for j in range(self.x_degree + 1): ij.append(x_deriv[j] * y_deriv[i]) v = np.array(ij) return v.T def _legendderiv1d(self, x, deg): """Derivative of 1D Legendre polynomial""" x = np.array(x, dtype=float, copy=False, ndmin=1) d = np.empty((deg + 1,) + x.shape, dtype=x.dtype) d[0] = x * 0 + 1 if deg > 0: d[1] = x for i in range(2, deg + 1): d[i] = (d[i - 1] * x * (2 * i - 1) - d[i - 2] * (i - 1)) / i return np.rollaxis(d, 0, d.ndim) class _SIP1D(PolynomialBase): """ This implements the Simple Imaging Polynomial Model (SIP) in 1D. It's unlikely it will be used in 1D so this class is private and SIP should be used instead. """ n_inputs = 2 n_outputs = 1 _separable = False def __init__(self, order, coeff_prefix, n_models=None, model_set_axis=None, name=None, meta=None, **params): self.order = order self.coeff_prefix = coeff_prefix self._param_names = self._generate_coeff_names(coeff_prefix) if n_models: if model_set_axis is None: model_set_axis = 0 minshape = (1,) * model_set_axis + (n_models,) else: minshape = () for param_name in self._param_names: self._parameters_[param_name] = \ Parameter(param_name, default=np.zeros(minshape)) super().__init__(n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta, **params) def __repr__(self): return self._format_repr(args=[self.order, self.coeff_prefix]) def __str__(self): return self._format_str( [('Order', self.order), ('Coeff. Prefix', self.coeff_prefix)]) def evaluate(self, x, y, *coeffs): # TODO: Rewrite this so that it uses a simpler method of determining # the matrix based on the number of given coefficients. mcoef = self._coeff_matrix(self.coeff_prefix, coeffs) return self._eval_sip(x, y, mcoef) def get_num_coeff(self, ndim): """ Return the number of coefficients in one param set """ if self.order < 2 or self.order > 9: raise ValueError("Degree of polynomial must be 2< deg < 9") nmixed = comb(self.order, ndim) # remove 3 terms because SIP deg >= 2 numc = self.order * ndim + nmixed - 2 return numc def _generate_coeff_names(self, coeff_prefix): names = [] for i in range(2, self.order + 1): names.append(f'{coeff_prefix}_{i}_{0}') for i in range(2, self.order + 1): names.append(f'{coeff_prefix}_{0}_{i}') for i in range(1, self.order): for j in range(1, self.order): if i + j < self.order + 1: names.append(f'{coeff_prefix}_{i}_{j}') return tuple(names) def _coeff_matrix(self, coeff_prefix, coeffs): mat = np.zeros((self.order + 1, self.order + 1)) for i in range(2, self.order + 1): attr = f'{coeff_prefix}_{i}_{0}' mat[i, 0] = coeffs[self.param_names.index(attr)] for i in range(2, self.order + 1): attr = f'{coeff_prefix}_{0}_{i}' mat[0, i] = coeffs[self.param_names.index(attr)] for i in range(1, self.order): for j in range(1, self.order): if i + j < self.order + 1: attr = f'{coeff_prefix}_{i}_{j}' mat[i, j] = coeffs[self.param_names.index(attr)] return mat def _eval_sip(self, x, y, coef): x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) if self.coeff_prefix == 'A': result = np.zeros(x.shape) else: result = np.zeros(y.shape) for i in range(coef.shape[0]): for j in range(coef.shape[1]): if 1 < i + j < self.order + 1: result = result + coef[i, j] * x ** i * y ** j return result class SIP(Model): """ Simple Imaging Polynomial (SIP) model. The SIP convention is used to represent distortions in FITS image headers. See [1]_ for a description of the SIP convention. Parameters ---------- crpix : list or (2,) ndarray CRPIX values a_order : int SIP polynomial order for first axis b_order : int SIP order for second axis a_coeff : dict SIP coefficients for first axis b_coeff : dict SIP coefficients for the second axis ap_order : int order for the inverse transformation (AP coefficients) bp_order : int order for the inverse transformation (BP coefficients) ap_coeff : dict coefficients for the inverse transform bp_coeff : dict coefficients for the inverse transform References ---------- .. [1] `David Shupe, et al, ADASS, ASP Conference Series, Vol. 347, 2005 `_ """ n_inputs = 2 n_outputs = 2 _separable = False def __init__(self, crpix, a_order, b_order, a_coeff={}, b_coeff={}, ap_order=None, bp_order=None, ap_coeff={}, bp_coeff={}, n_models=None, model_set_axis=None, name=None, meta=None): self._crpix = crpix self._a_order = a_order self._b_order = b_order self._a_coeff = a_coeff self._b_coeff = b_coeff self._ap_order = ap_order self._bp_order = bp_order self._ap_coeff = ap_coeff self._bp_coeff = bp_coeff self.shift_a = Shift(-crpix[0]) self.shift_b = Shift(-crpix[1]) self.sip1d_a = _SIP1D(a_order, coeff_prefix='A', n_models=n_models, model_set_axis=model_set_axis, **a_coeff) self.sip1d_b = _SIP1D(b_order, coeff_prefix='B', n_models=n_models, model_set_axis=model_set_axis, **b_coeff) super().__init__(n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta) self._inputs = ("u", "v") self._outputs = ("x", "y") def __repr__(self): return '<{}({!r})>'.format(self.__class__.__name__, [self.shift_a, self.shift_b, self.sip1d_a, self.sip1d_b]) def __str__(self): parts = [f'Model: {self.__class__.__name__}'] for model in [self.shift_a, self.shift_b, self.sip1d_a, self.sip1d_b]: parts.append(indent(str(model), width=4)) parts.append('') return '\n'.join(parts) @property def inverse(self): if (self._ap_order is not None and self._bp_order is not None): return InverseSIP(self._ap_order, self._bp_order, self._ap_coeff, self._bp_coeff) else: raise NotImplementedError("SIP inverse coefficients are not available.") def evaluate(self, x, y): u = self.shift_a.evaluate(x, *self.shift_a.param_sets) v = self.shift_b.evaluate(y, *self.shift_b.param_sets) f = self.sip1d_a.evaluate(u, v, *self.sip1d_a.param_sets) g = self.sip1d_b.evaluate(u, v, *self.sip1d_b.param_sets) return f, g class InverseSIP(Model): """ Inverse Simple Imaging Polynomial Parameters ---------- ap_order : int order for the inverse transformation (AP coefficients) bp_order : int order for the inverse transformation (BP coefficients) ap_coeff : dict coefficients for the inverse transform bp_coeff : dict coefficients for the inverse transform """ n_inputs = 2 n_outputs = 2 _separable = False def __init__(self, ap_order, bp_order, ap_coeff={}, bp_coeff={}, n_models=None, model_set_axis=None, name=None, meta=None): self._ap_order = ap_order self._bp_order = bp_order self._ap_coeff = ap_coeff self._bp_coeff = bp_coeff # define the 0th term in order to use Polynomial2D ap_coeff.setdefault('AP_0_0', 0) bp_coeff.setdefault('BP_0_0', 0) ap_coeff_params = dict((k.replace('AP_', 'c'), v) for k, v in ap_coeff.items()) bp_coeff_params = dict((k.replace('BP_', 'c'), v) for k, v in bp_coeff.items()) self.sip1d_ap = Polynomial2D(degree=ap_order, model_set_axis=model_set_axis, **ap_coeff_params) self.sip1d_bp = Polynomial2D(degree=bp_order, model_set_axis=model_set_axis, **bp_coeff_params) super().__init__(n_models=n_models, model_set_axis=model_set_axis, name=name, meta=meta) def __repr__(self): return f'<{self.__class__.__name__}({[self.sip1d_ap, self.sip1d_bp]!r})>' def __str__(self): parts = [f'Model: {self.__class__.__name__}'] for model in [self.sip1d_ap, self.sip1d_bp]: parts.append(indent(str(model), width=4)) parts.append('') return '\n'.join(parts) def evaluate(self, x, y): x1 = self.sip1d_ap.evaluate(x, y, *self.sip1d_ap.param_sets) y1 = self.sip1d_bp.evaluate(x, y, *self.sip1d_bp.param_sets) return x1, y1