# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name import types import warnings import pytest import numpy as np from numpy.testing import assert_allclose from numpy.random import default_rng from astropy.modeling.core import Fittable1DModel from astropy.modeling.parameters import Parameter from astropy.modeling import models from astropy.modeling import fitting from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa class TestNonLinearConstraints: def setup_class(self): self.g1 = models.Gaussian1D(10, 14.9, stddev=.3) self.g2 = models.Gaussian1D(10, 13, stddev=.4) self.x = np.arange(10, 20, .1) self.y1 = self.g1(self.x) self.y2 = self.g2(self.x) rsn = default_rng(1234567890) self.n = rsn.standard_normal(100) self.ny1 = self.y1 + 2 * self.n self.ny2 = self.y2 + 2 * self.n @pytest.mark.skipif('not HAS_SCIPY') def test_fixed_par(self): g1 = models.Gaussian1D(10, mean=14.9, stddev=.3, fixed={'amplitude': True}) fitter = fitting.LevMarLSQFitter() model = fitter(g1, self.x, self.ny1) assert model.amplitude.value == 10 @pytest.mark.skipif('not HAS_SCIPY') def test_tied_par(self): def tied(model): mean = 50 * model.stddev return mean g1 = models.Gaussian1D(10, mean=14.9, stddev=.3, tied={'mean': tied}) fitter = fitting.LevMarLSQFitter() model = fitter(g1, self.x, self.ny1) assert_allclose(model.mean.value, 50 * model.stddev, rtol=10 ** (-5)) @pytest.mark.skipif('not HAS_SCIPY') def test_joint_fitter(self): from scipy import optimize g1 = models.Gaussian1D(10, 14.9, stddev=.3) g2 = models.Gaussian1D(10, 13, stddev=.4) jf = fitting.JointFitter([g1, g2], {g1: ['amplitude'], g2: ['amplitude']}, [9.8]) x = np.arange(10, 20, .1) y1 = g1(x) y2 = g2(x) n = np.random.randn(100) ny1 = y1 + 2 * n ny2 = y2 + 2 * n jf(x, ny1, x, ny2) p1 = [14.9, .3] p2 = [13, .4] A = 9.8 p = np.r_[A, p1, p2] def compmodel(A, p, x): return A * np.exp(-0.5 / p[1] ** 2 * (x - p[0]) ** 2) def errf(p, x1, y1, x2, y2): return np.ravel( np.r_[compmodel(p[0], p[1:3], x1) - y1, compmodel(p[0], p[3:], x2) - y2]) fitparams, _ = optimize.leastsq(errf, p, args=(x, ny1, x, ny2)) assert_allclose(jf.fitparams, fitparams, rtol=10 ** (-5)) assert_allclose(g1.amplitude.value, g2.amplitude.value) @pytest.mark.skipif('not HAS_SCIPY') def test_no_constraints(self): from scipy import optimize g1 = models.Gaussian1D(9.9, 14.5, stddev=.3) def func(p, x): return p[0] * np.exp(-0.5 / p[2] ** 2 * (x - p[1]) ** 2) def errf(p, x, y): return func(p, x) - y p0 = [9.9, 14.5, 0.3] y = g1(self.x) n = np.random.randn(100) ny = y + n fitpar, s = optimize.leastsq(errf, p0, args=(self.x, ny)) fitter = fitting.LevMarLSQFitter() model = fitter(g1, self.x, ny) assert_allclose(model.parameters, fitpar, rtol=5 * 10 ** (-3)) @pytest.mark.skipif('not HAS_SCIPY') class TestBounds: def setup_class(self): A = -2.0 B = 0.5 self.x = np.linspace(-1.0, 1.0, 100) self.y = A * self.x + B + np.random.normal(scale=0.1, size=100) data = np.array([505.0, 556.0, 630.0, 595.0, 561.0, 553.0, 543.0, 496.0, 460.0, 469.0, 426.0, 518.0, 684.0, 798.0, 830.0, 794.0, 649.0, 706.0, 671.0, 545.0, 479.0, 454.0, 505.0, 700.0, 1058.0, 1231.0, 1325.0, 997.0, 1036.0, 884.0, 610.0, 487.0, 453.0, 527.0, 780.0, 1094.0, 1983.0, 1993.0, 1809.0, 1525.0, 1056.0, 895.0, 604.0, 466.0, 510.0, 678.0, 1130.0, 1986.0, 2670.0, 2535.0, 1878.0, 1450.0, 1200.0, 663.0, 511.0, 474.0, 569.0, 848.0, 1670.0, 2611.0, 3129.0, 2507.0, 1782.0, 1211.0, 723.0, 541.0, 511.0, 518.0, 597.0, 1137.0, 1993.0, 2925.0, 2438.0, 1910.0, 1230.0, 738.0, 506.0, 461.0, 486.0, 597.0, 733.0, 1262.0, 1896.0, 2342.0, 1792.0, 1180.0, 667.0, 482.0, 454.0, 482.0, 504.0, 566.0, 789.0, 1194.0, 1545.0, 1361.0, 933.0, 562.0, 418.0, 463.0, 435.0, 466.0, 528.0, 487.0, 664.0, 799.0, 746.0, 550.0, 478.0, 535.0, 443.0, 416.0, 439.0, 472.0, 472.0, 492.0, 523.0, 569.0, 487.0, 441.0, 428.0]) self.data = data.reshape(11, 11) def test_bounds_lsq(self): guess_slope = 1.1 guess_intercept = 0.0 bounds = {'slope': (-1.5, 5.0), 'intercept': (-1.0, 1.0)} line_model = models.Linear1D(guess_slope, guess_intercept, bounds=bounds) fitter = fitting.LevMarLSQFitter() with pytest.warns(AstropyUserWarning, match=r'Model is linear in parameters'): model = fitter(line_model, self.x, self.y) slope = model.slope.value intercept = model.intercept.value assert slope + 10 ** -5 >= bounds['slope'][0] assert slope - 10 ** -5 <= bounds['slope'][1] assert intercept + 10 ** -5 >= bounds['intercept'][0] assert intercept - 10 ** -5 <= bounds['intercept'][1] def test_bounds_slsqp(self): guess_slope = 1.1 guess_intercept = 0.0 bounds = {'slope': (-1.5, 5.0), 'intercept': (-1.0, 1.0)} line_model = models.Linear1D(guess_slope, guess_intercept, bounds=bounds) fitter = fitting.SLSQPLSQFitter() with pytest.warns(AstropyUserWarning, match='consider using linear fitting methods'): model = fitter(line_model, self.x, self.y) slope = model.slope.value intercept = model.intercept.value assert slope + 10 ** -5 >= bounds['slope'][0] assert slope - 10 ** -5 <= bounds['slope'][1] assert intercept + 10 ** -5 >= bounds['intercept'][0] assert intercept - 10 ** -5 <= bounds['intercept'][1] def test_bounds_gauss2d_lsq(self): X, Y = np.meshgrid(np.arange(11), np.arange(11)) bounds = {"x_mean": [0., 11.], "y_mean": [0., 11.], "x_stddev": [1., 4], "y_stddev": [1., 4]} gauss = models.Gaussian2D(amplitude=10., x_mean=5., y_mean=5., x_stddev=4., y_stddev=4., theta=0.5, bounds=bounds) gauss_fit = fitting.LevMarLSQFitter() with pytest.warns(AstropyUserWarning, match='The fit may be unsuccessful'): model = gauss_fit(gauss, X, Y, self.data) x_mean = model.x_mean.value y_mean = model.y_mean.value x_stddev = model.x_stddev.value y_stddev = model.y_stddev.value assert x_mean + 10 ** -5 >= bounds['x_mean'][0] assert x_mean - 10 ** -5 <= bounds['x_mean'][1] assert y_mean + 10 ** -5 >= bounds['y_mean'][0] assert y_mean - 10 ** -5 <= bounds['y_mean'][1] assert x_stddev + 10 ** -5 >= bounds['x_stddev'][0] assert x_stddev - 10 ** -5 <= bounds['x_stddev'][1] assert y_stddev + 10 ** -5 >= bounds['y_stddev'][0] assert y_stddev - 10 ** -5 <= bounds['y_stddev'][1] def test_bounds_gauss2d_slsqp(self): X, Y = np.meshgrid(np.arange(11), np.arange(11)) bounds = {"x_mean": [0., 11.], "y_mean": [0., 11.], "x_stddev": [1., 4], "y_stddev": [1., 4]} gauss = models.Gaussian2D(amplitude=10., x_mean=5., y_mean=5., x_stddev=4., y_stddev=4., theta=0.5, bounds=bounds) gauss_fit = fitting.SLSQPLSQFitter() # Warning does not appear in all the CI jobs. # TODO: Rewrite the test for more consistent warning behavior. with warnings.catch_warnings(): warnings.filterwarnings('ignore', message=r'.*The fit may be unsuccessful.*', category=AstropyUserWarning) model = gauss_fit(gauss, X, Y, self.data) x_mean = model.x_mean.value y_mean = model.y_mean.value x_stddev = model.x_stddev.value y_stddev = model.y_stddev.value assert x_mean + 10 ** -5 >= bounds['x_mean'][0] assert x_mean - 10 ** -5 <= bounds['x_mean'][1] assert y_mean + 10 ** -5 >= bounds['y_mean'][0] assert y_mean - 10 ** -5 <= bounds['y_mean'][1] assert x_stddev + 10 ** -5 >= bounds['x_stddev'][0] assert x_stddev - 10 ** -5 <= bounds['x_stddev'][1] assert y_stddev + 10 ** -5 >= bounds['y_stddev'][0] assert y_stddev - 10 ** -5 <= bounds['y_stddev'][1] class TestLinearConstraints: def setup_class(self): self.p1 = models.Polynomial1D(4) self.p1.c0 = 0 self.p1.c1 = 0 self.p1.window = [0., 9.] self.x = np.arange(10) self.y = self.p1(self.x) rsn = default_rng(1234567890) self.n = rsn.standard_normal(10) self.ny = self.y + self.n def test(self): self.p1.c0.fixed = True self.p1.c1.fixed = True pfit = fitting.LinearLSQFitter() model = pfit(self.p1, self.x, self.y) assert_allclose(self.y, model(self.x)) # Test constraints as parameter properties def test_set_fixed_1(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.mean.fixed = True assert gauss.fixed == {'amplitude': False, 'mean': True, 'stddev': False} def test_set_fixed_2(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, fixed={'mean': True}) assert gauss.mean.fixed is True def test_set_tied_1(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.amplitude.tied = tie_amplitude assert gauss.amplitude.tied is not False assert isinstance(gauss.tied['amplitude'], types.FunctionType) def test_set_tied_2(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, tied={'amplitude': tie_amplitude}) assert gauss.amplitude.tied def test_unset_fixed(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, fixed={'mean': True}) gauss.mean.fixed = False assert gauss.fixed == {'amplitude': False, 'mean': False, 'stddev': False} def test_unset_tied(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, tied={'amplitude': tie_amplitude}) gauss.amplitude.tied = False assert gauss.tied == {'amplitude': False, 'mean': False, 'stddev': False} def test_set_bounds_1(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, bounds={'stddev': (0, None)}) assert gauss.bounds == {'amplitude': (None, None), 'mean': (None, None), 'stddev': (0.0, None)} def test_set_bounds_2(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.stddev.min = 0. assert gauss.bounds == {'amplitude': (None, None), 'mean': (None, None), 'stddev': (0.0, None)} def test_unset_bounds(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, bounds={'stddev': (0, 2)}) gauss.stddev.min = None gauss.stddev.max = None assert gauss.bounds == {'amplitude': (None, None), 'mean': (None, None), 'stddev': (None, None)} def test_default_constraints(): """Regression test for https://github.com/astropy/astropy/issues/2396 Ensure that default constraints defined on parameters are carried through to instances of the models those parameters are defined for. """ class MyModel(Fittable1DModel): a = Parameter(default=1) b = Parameter(default=0, min=0, fixed=True) @staticmethod def evaluate(x, a, b): return x * a + b assert MyModel.a.default == 1 assert MyModel.b.default == 0 assert MyModel.b.min == 0 assert MyModel.b.bounds == (0, None) assert MyModel.b.fixed is True m = MyModel() assert m.a.value == 1 assert m.b.value == 0 assert m.b.min == 0 assert m.b.bounds == (0, None) assert m.b.fixed is True assert m.bounds == {'a': (None, None), 'b': (0, None)} assert m.fixed == {'a': False, 'b': True} # Make a model instance that overrides the default constraints and values m = MyModel(3, 4, bounds={'a': (1, None), 'b': (2, None)}, fixed={'a': True, 'b': False}) assert m.a.value == 3 assert m.b.value == 4 assert m.a.min == 1 assert m.b.min == 2 assert m.a.bounds == (1, None) assert m.b.bounds == (2, None) assert m.a.fixed is True assert m.b.fixed is False assert m.bounds == {'a': (1, None), 'b': (2, None)} assert m.fixed == {'a': True, 'b': False} @pytest.mark.skipif('not HAS_SCIPY') def test_fit_with_fixed_and_bound_constraints(): """ Regression test for https://github.com/astropy/astropy/issues/2235 Currently doesn't test that the fit is any *good*--just that parameters stay within their given constraints. """ m = models.Gaussian1D(amplitude=3, mean=4, stddev=1, bounds={'mean': (4, 5)}, fixed={'amplitude': True}) x = np.linspace(0, 10, 10) y = np.exp(-x ** 2 / 2) f = fitting.LevMarLSQFitter() fitted_1 = f(m, x, y) assert fitted_1.mean >= 4 assert fitted_1.mean <= 5 assert fitted_1.amplitude == 3.0 m.amplitude.fixed = False _ = f(m, x, y) # It doesn't matter anymore what the amplitude ends up as so long as the # bounds constraint was still obeyed assert fitted_1.mean >= 4 assert fitted_1.mean <= 5 @pytest.mark.skipif('not HAS_SCIPY') def test_fit_with_bound_constraints_estimate_jacobian(): """ Regression test for https://github.com/astropy/astropy/issues/2400 Checks that bounds constraints are obeyed on a custom model that does not define fit_deriv (and thus its Jacobian must be estimated for non-linear fitting). """ class MyModel(Fittable1DModel): a = Parameter(default=1) b = Parameter(default=2) @staticmethod def evaluate(x, a, b): return a * x + b m_real = MyModel(a=1.5, b=-3) x = np.arange(100) y = m_real(x) m = MyModel() f = fitting.LevMarLSQFitter() fitted_1 = f(m, x, y) # This fit should be trivial so even without constraints on the bounds it # should be right assert np.allclose(fitted_1.a, 1.5) assert np.allclose(fitted_1.b, -3) m2 = MyModel() m2.a.bounds = (-2, 2) f2 = fitting.LevMarLSQFitter() _ = f2(m2, x, y) assert np.allclose(fitted_1.a, 1.5) assert np.allclose(fitted_1.b, -3) # Check that the estimated Jacobian was computed (it doesn't matter what # the values are so long as they're not all zero. assert np.any(f2.fit_info['fjac'] != 0) # https://github.com/astropy/astropy/issues/6014 @pytest.mark.skipif('not HAS_SCIPY') def test_gaussian2d_positive_stddev(): # This is 2D Gaussian with noise to be fitted, as provided by @ysBach test = [ [-54.33, 13.81, -34.55, 8.95, -143.71, -0.81, 59.25, -14.78, -204.9, -30.87, -124.39, 123.53, 70.81, -109.48, -106.77, 35.64, 18.29], [-126.19, -89.13, 63.13, 50.74, 61.83, 19.06, 65.7, 77.94, 117.14, 139.37, 52.57, 236.04, 100.56, 242.28, -180.62, 154.02, -8.03], [91.43, 96.45, -118.59, -174.58, -116.49, 80.11, -86.81, 14.62, 79.26, 7.56, 54.99, 260.13, -136.42, -20.77, -77.55, 174.52, 134.41], [33.88, 7.63, 43.54, 70.99, 69.87, 33.97, 273.75, 176.66, 201.94, 336.34, 340.54, 163.77, -156.22, 21.49, -148.41, 94.88, 42.55], [82.28, 177.67, 26.81, 17.66, 47.81, -31.18, 353.23, 589.11, 553.27, 242.35, 444.12, 186.02, 140.73, 75.2, -87.98, -18.23, 166.74], [113.09, -37.01, 134.23, 71.89, 107.88, 198.69, 273.88, 626.63, 551.8, 547.61, 580.35, 337.8, 139.8, 157.64, -1.67, -26.99, 37.35], [106.47, 31.97, 84.99, -125.79, 195.0, 493.65, 861.89, 908.31, 803.9, 781.01, 532.59, 404.67, 115.18, 111.11, 28.08, 122.05, -58.36], [183.62, 45.22, 40.89, 111.58, 425.81, 321.53, 545.09, 866.02, 784.78, 731.35, 609.01, 405.41, -19.65, 71.2, -140.5, 144.07, 25.24], [137.13, -86.95, 15.39, 180.14, 353.23, 699.01, 1033.8, 1014.49, 814.11, 647.68, 461.03, 249.76, 94.8, 41.17, -1.16, 183.76, 188.19], [35.39, 26.92, 198.53, -37.78, 638.93, 624.41, 816.04, 867.28, 697.0, 491.56, 378.21, -18.46, -65.76, 98.1, 12.41, -102.18, 119.05], [190.73, 125.82, 311.45, 369.34, 554.39, 454.37, 755.7, 736.61, 542.43, 188.24, 214.86, 217.91, 7.91, 27.46, -172.14, -82.36, -80.31], [-55.39, 80.18, 267.19, 274.2, 169.53, 327.04, 488.15, 437.53, 225.38, 220.94, 4.01, -92.07, 39.68, 57.22, 144.66, 100.06, 34.96], [130.47, -4.23, 46.3, 101.49, 115.01, 217.38, 249.83, 115.9, 87.36, 105.81, -47.86, -9.94, -82.28, 144.45, 83.44, 23.49, 183.9], [-110.38, -115.98, 245.46, 103.51, 255.43, 163.47, 56.52, 33.82, -33.26, -111.29, 88.08, 193.2, -100.68, 15.44, 86.32, -26.44, -194.1], [109.36, 96.01, -124.89, -16.4, 84.37, 114.87, -65.65, -58.52, -23.22, 42.61, 144.91, -209.84, 110.29, 66.37, -117.85, -147.73, -122.51], [10.94, 45.98, 118.12, -46.53, -72.14, -74.22, 21.22, 0.39, 86.03, 23.97, -45.42, 12.05, -168.61, 27.79, 61.81, 84.07, 28.79], [46.61, -104.11, 56.71, -90.85, -16.51, -66.45, -141.34, 0.96, 58.08, 285.29, -61.41, -9.01, -323.38, 58.35, 80.14, -101.22, 145.65]] g_init = models.Gaussian2D(x_mean=8, y_mean=8) fitter = fitting.LevMarLSQFitter() y, x = np.mgrid[:17, :17] g_fit = fitter(g_init, x, y, test) # Compare with @ysBach original result: # - x_stddev was negative, so its abs value is used for comparison here. # - theta is beyond (-90, 90) deg, which doesn't make sense, so ignored. assert_allclose([g_fit.amplitude.value, g_fit.y_stddev.value], [984.7694929790363, 3.1840618351417307], rtol=1.5e-6) assert_allclose(g_fit.x_mean.value, 7.198391516587464) assert_allclose(g_fit.y_mean.value, 7.49720660088511, rtol=5e-7) assert_allclose(g_fit.x_stddev.value, 1.9840185107597297, rtol=2e-6) # Issue #6403 @pytest.mark.skipif('not HAS_SCIPY') @pytest.mark.filterwarnings(r'ignore:Model is linear in parameters.*') def test_2d_model(): from astropy.utils import NumpyRNGContext # 2D model with LevMarLSQFitter gauss2d = models.Gaussian2D(10.2, 4.3, 5, 2, 1.2, 1.4) fitter = fitting.LevMarLSQFitter() X = np.linspace(-1, 7, 200) Y = np.linspace(-1, 7, 200) x, y = np.meshgrid(X, Y) z = gauss2d(x, y) w = np.ones(x.size) w.shape = x.shape with NumpyRNGContext(1234567890): n = np.random.randn(x.size) n.shape = x.shape m = fitter(gauss2d, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) m = fitter(gauss2d, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) # 2D model with LevMarLSQFitter, fixed constraint gauss2d.x_stddev.fixed = True m = fitter(gauss2d, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) m = fitter(gauss2d, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) # Polynomial2D, col_fit_deriv=False p2 = models.Polynomial2D(1, c0_0=1, c1_0=1.2, c0_1=3.2) z = p2(x, y) m = fitter(p2, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, p2.parameters, rtol=0.05) m = fitter(p2, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, p2.parameters, rtol=0.05) # Polynomial2D, col_fit_deriv=False, fixed constraint p2.c1_0.fixed = True m = fitter(p2, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, p2.parameters, rtol=0.05) m = fitter(p2, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, p2.parameters, rtol=0.05) def test_set_prior_posterior(): model = models.Polynomial1D(1) model.c0.prior = models.Gaussian1D(2.3, 2, .1) assert model.c0.prior(2) == 2.3 model.c0.posterior = models.Linear1D(1, .2) assert model.c0.posterior(1) == 1.2 def test_set_constraints(): g = models.Gaussian1D() p = models.Polynomial1D(1) # Set bounds before model combination g.stddev.bounds = (0, 3) m = g + p assert m.bounds == {'amplitude_0': (None, None), 'mean_0': (None, None), 'stddev_0': (0.0, 3.0), 'c0_1': (None, None), 'c1_1': (None, None)} # Set bounds on the compound model m.stddev_0.bounds = (1, 3) assert m.bounds == {'amplitude_0': (None, None), 'mean_0': (None, None), 'stddev_0': (1.0, 3.0), 'c0_1': (None, None), 'c1_1': (None, None)} # Set the bounds of a Parameter directly in the bounds dict m.bounds['stddev_0'] = (4, 5) assert m.bounds == {'amplitude_0': (None, None), 'mean_0': (None, None), 'stddev_0': (4, 5), 'c0_1': (None, None), 'c1_1': (None, None)} # Set the bounds of a Parameter on the child model bounds dict g.bounds['stddev'] = (1, 5) m = g + p assert m.bounds == {'amplitude_0': (None, None), 'mean_0': (None, None), 'stddev_0': (1, 5), 'c0_1': (None, None), 'c1_1': (None, None)}