# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module implements the Slicing mixin to the NDData class. from astropy import log from astropy.wcs.wcsapi import (BaseLowLevelWCS, BaseHighLevelWCS, SlicedLowLevelWCS, HighLevelWCSWrapper) __all__ = ['NDSlicingMixin'] class NDSlicingMixin: """Mixin to provide slicing on objects using the `NDData` interface. The ``data``, ``mask``, ``uncertainty`` and ``wcs`` will be sliced, if set and sliceable. The ``unit`` and ``meta`` will be untouched. The return will be a reference and not a copy, if possible. Examples -------- Using this Mixin with `~astropy.nddata.NDData`: >>> from astropy.nddata import NDData, NDSlicingMixin >>> class NDDataSliceable(NDSlicingMixin, NDData): ... pass Slicing an instance containing data:: >>> nd = NDDataSliceable([1,2,3,4,5]) >>> nd[1:3] NDDataSliceable([2, 3]) Also the other attributes are sliced for example the ``mask``:: >>> import numpy as np >>> mask = np.array([True, False, True, True, False]) >>> nd2 = NDDataSliceable(nd, mask=mask) >>> nd2slc = nd2[1:3] >>> nd2slc[nd2slc.mask] NDDataSliceable([3]) Be aware that changing values of the sliced instance will change the values of the original:: >>> nd3 = nd2[1:3] >>> nd3.data[0] = 100 >>> nd2 NDDataSliceable([ 1, 100, 3, 4, 5]) See also -------- NDDataRef NDDataArray """ def __getitem__(self, item): # Abort slicing if the data is a single scalar. if self.data.shape == (): raise TypeError('scalars cannot be sliced.') # Let the other methods handle slicing. kwargs = self._slice(item) return self.__class__(**kwargs) def _slice(self, item): """Collects the sliced attributes and passes them back as `dict`. It passes uncertainty, mask and wcs to their appropriate ``_slice_*`` method, while ``meta`` and ``unit`` are simply taken from the original. The data is assumed to be sliceable and is sliced directly. When possible the return should *not* be a copy of the data but a reference. Parameters ---------- item : slice The slice passed to ``__getitem__``. Returns ------- dict : Containing all the attributes after slicing - ready to use them to create ``self.__class__.__init__(**kwargs)`` in ``__getitem__``. """ kwargs = {} kwargs['data'] = self.data[item] # Try to slice some attributes kwargs['uncertainty'] = self._slice_uncertainty(item) kwargs['mask'] = self._slice_mask(item) kwargs['wcs'] = self._slice_wcs(item) # Attributes which are copied and not intended to be sliced kwargs['unit'] = self.unit kwargs['meta'] = self.meta return kwargs def _slice_uncertainty(self, item): if self.uncertainty is None: return None try: return self.uncertainty[item] except TypeError: # Catching TypeError in case the object has no __getitem__ method. # But let IndexError raise. log.info("uncertainty cannot be sliced.") return self.uncertainty def _slice_mask(self, item): if self.mask is None: return None try: return self.mask[item] except TypeError: log.info("mask cannot be sliced.") return self.mask def _slice_wcs(self, item): if self.wcs is None: return None try: llwcs = SlicedLowLevelWCS(self.wcs.low_level_wcs, item) return HighLevelWCSWrapper(llwcs) except Exception as err: self._handle_wcs_slicing_error(err, item) # Implement this in a method to allow subclasses to customise the error. def _handle_wcs_slicing_error(self, err, item): raise ValueError(f"Slicing the WCS object with the slice '{item}' " "failed, if you want to slice the NDData object without the WCS, you " "can remove by setting `NDData.wcs = None` and then retry.") from err