# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy.utils.data_info import ParentDtypeInfo class NdarrayMixinInfo(ParentDtypeInfo): _represent_as_dict_primary_data = 'data' def _represent_as_dict(self): """Represent Column as a dict that can be serialized.""" col = self._parent out = {'data': col.view(np.ndarray)} return out def _construct_from_dict(self, map): """Construct Column from ``map``.""" data = map.pop('data') out = self._parent_cls(data, **map) return out class NdarrayMixin(np.ndarray): """ Mixin column class to allow storage of arbitrary numpy ndarrays within a Table. This is a subclass of numpy.ndarray and has the same initialization options as ``np.array()``. """ info = NdarrayMixinInfo() def __new__(cls, obj, *args, **kwargs): self = np.array(obj, *args, **kwargs).view(cls) if 'info' in getattr(obj, '__dict__', ()): self.info = obj.info return self def __array_finalize__(self, obj): if obj is None: return if callable(super().__array_finalize__): super().__array_finalize__(obj) # Self was created from template (e.g. obj[slice] or (obj * 2)) # or viewcast e.g. obj.view(Column). In either case we want to # init Column attributes for self from obj if possible. if 'info' in getattr(obj, '__dict__', ()): self.info = obj.info def __reduce__(self): # patch to pickle NdArrayMixin objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html object_state = list(super().__reduce__()) object_state[2] = (object_state[2], self.__dict__) return tuple(object_state) def __setstate__(self, state): # patch to unpickle NdarrayMixin objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html nd_state, own_state = state super().__setstate__(nd_state) self.__dict__.update(own_state)