import difflib import functools import sys import numbers import numpy as np from .misc import indent __all__ = ['fixed_width_indent', 'diff_values', 'report_diff_values', 'where_not_allclose'] # Smaller default shift-width for indent fixed_width_indent = functools.partial(indent, width=2) def diff_values(a, b, rtol=0.0, atol=0.0): """ Diff two scalar values. If both values are floats, they are compared to within the given absolute and relative tolerance. Parameters ---------- a, b : int, float, str Scalar values to compare. rtol, atol : float Relative and absolute tolerances as accepted by :func:`numpy.allclose`. Returns ------- is_different : bool `True` if they are different, else `False`. """ if isinstance(a, float) and isinstance(b, float): if np.isnan(a) and np.isnan(b): return False return not np.allclose(a, b, rtol=rtol, atol=atol) else: return a != b def report_diff_values(a, b, fileobj=sys.stdout, indent_width=0): """ Write a diff report between two values to the specified file-like object. Parameters ---------- a, b Values to compare. Anything that can be turned into strings and compared using :py:mod:`difflib` should work. fileobj : object File-like object to write to. The default is ``sys.stdout``, which writes to terminal. indent_width : int Character column(s) to indent. Returns ------- identical : bool `True` if no diff, else `False`. """ if isinstance(a, np.ndarray) and isinstance(b, np.ndarray): if a.shape != b.shape: fileobj.write( fixed_width_indent(' Different array shapes:\n', indent_width)) report_diff_values(str(a.shape), str(b.shape), fileobj=fileobj, indent_width=indent_width + 1) return False diff_indices = np.transpose(np.where(a != b)) num_diffs = diff_indices.shape[0] for idx in diff_indices[:3]: lidx = idx.tolist() fileobj.write( fixed_width_indent(f' at {lidx!r}:\n', indent_width)) report_diff_values(a[tuple(idx)], b[tuple(idx)], fileobj=fileobj, indent_width=indent_width + 1) if num_diffs > 3: fileobj.write(fixed_width_indent( f' ...and at {num_diffs - 3:d} more indices.\n', indent_width)) return False return num_diffs == 0 typea = type(a) typeb = type(b) if typea == typeb: lnpad = ' ' sign_a = 'a>' sign_b = 'b>' if isinstance(a, numbers.Number): a = repr(a) b = repr(b) else: a = str(a) b = str(b) else: padding = max(len(typea.__name__), len(typeb.__name__)) + 3 lnpad = (padding + 1) * ' ' sign_a = ('(' + typea.__name__ + ') ').rjust(padding) + 'a>' sign_b = ('(' + typeb.__name__ + ') ').rjust(padding) + 'b>' is_a_str = isinstance(a, str) is_b_str = isinstance(b, str) a = (repr(a) if ((is_a_str and not is_b_str) or (not is_a_str and isinstance(a, numbers.Number))) else str(a)) b = (repr(b) if ((is_b_str and not is_a_str) or (not is_b_str and isinstance(b, numbers.Number))) else str(b)) identical = True for line in difflib.ndiff(a.splitlines(), b.splitlines()): if line[0] == '-': identical = False line = sign_a + line[1:] elif line[0] == '+': identical = False line = sign_b + line[1:] else: line = lnpad + line fileobj.write(fixed_width_indent( ' {}\n'.format(line.rstrip('\n')), indent_width)) return identical def where_not_allclose(a, b, rtol=1e-5, atol=1e-8): """ A version of :func:`numpy.allclose` that returns the indices where the two arrays differ, instead of just a boolean value. Parameters ---------- a, b : array-like Input arrays to compare. rtol, atol : float Relative and absolute tolerances as accepted by :func:`numpy.allclose`. Returns ------- idx : tuple of array Indices where the two arrays differ. """ # Create fixed mask arrays to handle INF and NaN; currently INF and NaN # are handled as equivalent if not np.all(np.isfinite(a)): a = np.ma.fix_invalid(a).data if not np.all(np.isfinite(b)): b = np.ma.fix_invalid(b).data if atol == 0.0 and rtol == 0.0: # Use a faster comparison for the most simple (and common) case return np.where(a != b) return np.where(np.abs(a - b) > (atol + rtol * np.abs(b)))