# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Classes that deal with stretching, i.e. mapping a range of [0:1] values onto another set of [0:1] values with a transformation """ import numpy as np from .transform import BaseTransform from .transform import CompositeTransform __all__ = ["BaseStretch", "LinearStretch", "SqrtStretch", "PowerStretch", "PowerDistStretch", "SquaredStretch", "LogStretch", "AsinhStretch", "SinhStretch", "HistEqStretch", "ContrastBiasStretch", "CompositeStretch"] def _logn(n, x, out=None): """Calculate the log base n of x.""" # We define this because numpy.lib.scimath.logn doesn't support out= if out is None: return np.log(x) / np.log(n) else: np.log(x, out=out) np.true_divide(out, np.log(n), out=out) return out def _prepare(values, clip=True, out=None): """ Prepare the data by optionally clipping and copying, and return the array that should be subsequently used for in-place calculations. """ if clip: return np.clip(values, 0., 1., out=out) else: if out is None: return np.array(values, copy=True) else: out[:] = np.asarray(values) return out class BaseStretch(BaseTransform): """ Base class for the stretch classes, which, when called with an array of values in the range [0:1], return an transformed array of values, also in the range [0:1]. """ @property def _supports_invalid_kw(self): return False def __add__(self, other): return CompositeStretch(other, self) def __call__(self, values, clip=True, out=None): """ Transform values using this stretch. Parameters ---------- values : array-like The input values, which should already be normalized to the [0:1] range. clip : bool, optional If `True` (default), values outside the [0:1] range are clipped to the [0:1] range. out : ndarray, optional If specified, the output values will be placed in this array (typically used for in-place calculations). Returns ------- result : ndarray The transformed values. """ @property def inverse(self): """A stretch object that performs the inverse operation.""" class LinearStretch(BaseStretch): """ A linear stretch with a slope and offset. The stretch is given by: .. math:: y = slope x + intercept Parameters ---------- slope : float, optional The ``slope`` parameter used in the above formula. Default is 1. intercept : float, optional The ``intercept`` parameter used in the above formula. Default is 0. """ def __init__(self, slope=1, intercept=0): super().__init__() self.slope = slope self.intercept = intercept def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) if self.slope != 1: np.multiply(values, self.slope, out=values) if self.intercept != 0: np.add(values, self.intercept, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return LinearStretch(1. / self.slope, - self.intercept / self.slope) class SqrtStretch(BaseStretch): r""" A square root stretch. The stretch is given by: .. math:: y = \sqrt{x} """ @property def _supports_invalid_kw(self): return True def __call__(self, values, clip=True, out=None, invalid=None): """ Transform values using this stretch. Parameters ---------- values : array-like The input values, which should already be normalized to the [0:1] range. clip : bool, optional If `True` (default), values outside the [0:1] range are clipped to the [0:1] range. out : ndarray, optional If specified, the output values will be placed in this array (typically used for in-place calculations). invalid : None or float, optional Value to assign NaN values generated by this class. NaNs in the input ``values`` array are not changed. This option is generally used with matplotlib normalization classes, where the ``invalid`` value should map to the matplotlib colormap "under" value (i.e., any finite value < 0). If `None`, then NaN values are not replaced. This keyword has no effect if ``clip=True``. Returns ------- result : ndarray The transformed values. """ values = _prepare(values, clip=clip, out=out) replace_invalid = not clip and invalid is not None with np.errstate(invalid='ignore'): if replace_invalid: idx = (values < 0) np.sqrt(values, out=values) if replace_invalid: # Assign new NaN (i.e., NaN not in the original input # values, but generated by this class) to the invalid value. values[idx] = invalid return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return PowerStretch(2) class PowerStretch(BaseStretch): r""" A power stretch. The stretch is given by: .. math:: y = x^a Parameters ---------- a : float The power index (see the above formula). ``a`` must be greater than 0. """ @property def _supports_invalid_kw(self): return True def __init__(self, a): super().__init__() if a <= 0: raise ValueError("a must be > 0") self.power = a def __call__(self, values, clip=True, out=None, invalid=None): """ Transform values using this stretch. Parameters ---------- values : array-like The input values, which should already be normalized to the [0:1] range. clip : bool, optional If `True` (default), values outside the [0:1] range are clipped to the [0:1] range. out : ndarray, optional If specified, the output values will be placed in this array (typically used for in-place calculations). invalid : None or float, optional Value to assign NaN values generated by this class. NaNs in the input ``values`` array are not changed. This option is generally used with matplotlib normalization classes, where the ``invalid`` value should map to the matplotlib colormap "under" value (i.e., any finite value < 0). If `None`, then NaN values are not replaced. This keyword has no effect if ``clip=True``. Returns ------- result : ndarray The transformed values. """ values = _prepare(values, clip=clip, out=out) replace_invalid = (not clip and invalid is not None and ((-1 < self.power < 0) or (0 < self.power < 1))) with np.errstate(invalid='ignore'): if replace_invalid: idx = (values < 0) np.power(values, self.power, out=values) if replace_invalid: # Assign new NaN (i.e., NaN not in the original input # values, but generated by this class) to the invalid value. values[idx] = invalid return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return PowerStretch(1. / self.power) class PowerDistStretch(BaseStretch): r""" An alternative power stretch. The stretch is given by: .. math:: y = \frac{a^x - 1}{a - 1} Parameters ---------- a : float, optional The ``a`` parameter used in the above formula. ``a`` must be greater than or equal to 0, but cannot be set to 1. Default is 1000. """ def __init__(self, a=1000.0): if a < 0 or a == 1: # singularity raise ValueError("a must be >= 0, but cannot be set to 1") super().__init__() self.exp = a def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) np.power(self.exp, values, out=values) np.subtract(values, 1, out=values) np.true_divide(values, self.exp - 1.0, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return InvertedPowerDistStretch(a=self.exp) class InvertedPowerDistStretch(BaseStretch): r""" Inverse transformation for `~astropy.image.scaling.PowerDistStretch`. The stretch is given by: .. math:: y = \frac{\log(y (a-1) + 1)}{\log a} Parameters ---------- a : float, optional The ``a`` parameter used in the above formula. ``a`` must be greater than or equal to 0, but cannot be set to 1. Default is 1000. """ def __init__(self, a=1000.0): if a < 0 or a == 1: # singularity raise ValueError("a must be >= 0, but cannot be set to 1") super().__init__() self.exp = a def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) np.multiply(values, self.exp - 1.0, out=values) np.add(values, 1, out=values) _logn(self.exp, values, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return PowerDistStretch(a=self.exp) class SquaredStretch(PowerStretch): r""" A convenience class for a power stretch of 2. The stretch is given by: .. math:: y = x^2 """ def __init__(self): super().__init__(2) @property def inverse(self): """A stretch object that performs the inverse operation.""" return SqrtStretch() class LogStretch(BaseStretch): r""" A log stretch. The stretch is given by: .. math:: y = \frac{\log{(a x + 1)}}{\log{(a + 1)}} Parameters ---------- a : float The ``a`` parameter used in the above formula. ``a`` must be greater than 0. Default is 1000. """ @property def _supports_invalid_kw(self): return True def __init__(self, a=1000.0): super().__init__() if a <= 0: # singularity raise ValueError("a must be > 0") self.exp = a def __call__(self, values, clip=True, out=None, invalid=None): """ Transform values using this stretch. Parameters ---------- values : array-like The input values, which should already be normalized to the [0:1] range. clip : bool, optional If `True` (default), values outside the [0:1] range are clipped to the [0:1] range. out : ndarray, optional If specified, the output values will be placed in this array (typically used for in-place calculations). invalid : None or float, optional Value to assign NaN values generated by this class. NaNs in the input ``values`` array are not changed. This option is generally used with matplotlib normalization classes, where the ``invalid`` value should map to the matplotlib colormap "under" value (i.e., any finite value < 0). If `None`, then NaN values are not replaced. This keyword has no effect if ``clip=True``. Returns ------- result : ndarray The transformed values. """ values = _prepare(values, clip=clip, out=out) replace_invalid = not clip and invalid is not None with np.errstate(invalid='ignore'): if replace_invalid: idx = (values < 0) np.multiply(values, self.exp, out=values) np.add(values, 1., out=values) np.log(values, out=values) np.true_divide(values, np.log(self.exp + 1.), out=values) if replace_invalid: # Assign new NaN (i.e., NaN not in the original input # values, but generated by this class) to the invalid value. values[idx] = invalid return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return InvertedLogStretch(self.exp) class InvertedLogStretch(BaseStretch): r""" Inverse transformation for `~astropy.image.scaling.LogStretch`. The stretch is given by: .. math:: y = \frac{e^{y \log{a + 1}} - 1}{a} \\ y = \frac{e^{y} (a + 1) - 1}{a} Parameters ---------- a : float, optional The ``a`` parameter used in the above formula. ``a`` must be greater than 0. Default is 1000. """ def __init__(self, a): super().__init__() if a <= 0: # singularity raise ValueError("a must be > 0") self.exp = a def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) np.multiply(values, np.log(self.exp + 1.), out=values) np.exp(values, out=values) np.subtract(values, 1., out=values) np.true_divide(values, self.exp, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return LogStretch(self.exp) class AsinhStretch(BaseStretch): r""" An asinh stretch. The stretch is given by: .. math:: y = \frac{{\rm asinh}(x / a)}{{\rm asinh}(1 / a)}. Parameters ---------- a : float, optional The ``a`` parameter used in the above formula. The value of this parameter is where the asinh curve transitions from linear to logarithmic behavior, expressed as a fraction of the normalized image. ``a`` must be greater than 0 and less than or equal to 1 (0 < a <= 1). Default is 0.1. """ def __init__(self, a=0.1): super().__init__() if a <= 0 or a > 1: raise ValueError("a must be > 0 and <= 1") self.a = a def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) np.true_divide(values, self.a, out=values) np.arcsinh(values, out=values) np.true_divide(values, np.arcsinh(1. / self.a), out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return SinhStretch(a=1. / np.arcsinh(1. / self.a)) class SinhStretch(BaseStretch): r""" A sinh stretch. The stretch is given by: .. math:: y = \frac{{\rm sinh}(x / a)}{{\rm sinh}(1 / a)} Parameters ---------- a : float, optional The ``a`` parameter used in the above formula. ``a`` must be greater than 0 and less than or equal to 1 (0 < a <= 1). Default is 1/3. """ def __init__(self, a=1./3.): super().__init__() if a <= 0 or a > 1: raise ValueError("a must be > 0 and <= 1") self.a = a def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) np.true_divide(values, self.a, out=values) np.sinh(values, out=values) np.true_divide(values, np.sinh(1. / self.a), out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return AsinhStretch(a=1. / np.sinh(1. / self.a)) class HistEqStretch(BaseStretch): """ A histogram equalization stretch. Parameters ---------- data : array-like The data defining the equalization. values : array-like, optional The input image values, which should already be normalized to the [0:1] range. """ def __init__(self, data, values=None): # Assume data is not necessarily normalized at this point self.data = np.sort(data.ravel()) self.data = self.data[np.isfinite(self.data)] vmin = self.data.min() vmax = self.data.max() self.data = (self.data - vmin) / (vmax - vmin) # Compute relative position of each pixel if values is None: self.values = np.linspace(0., 1., len(self.data)) else: self.values = values def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) values[:] = np.interp(values, self.data, self.values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return InvertedHistEqStretch(self.data, values=self.values) class InvertedHistEqStretch(BaseStretch): """ Inverse transformation for `~astropy.image.scaling.HistEqStretch`. Parameters ---------- data : array-like The data defining the equalization. values : array-like, optional The input image values, which should already be normalized to the [0:1] range. """ def __init__(self, data, values=None): self.data = data[np.isfinite(data)] if values is None: self.values = np.linspace(0., 1., len(self.data)) else: self.values = values def __call__(self, values, clip=True, out=None): values = _prepare(values, clip=clip, out=out) values[:] = np.interp(values, self.values, self.data) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return HistEqStretch(self.data, values=self.values) class ContrastBiasStretch(BaseStretch): r""" A stretch that takes into account contrast and bias. The stretch is given by: .. math:: y = (x - {\rm bias}) * {\rm contrast} + 0.5 and the output values are clipped to the [0:1] range. Parameters ---------- contrast : float The contrast parameter (see the above formula). bias : float The bias parameter (see the above formula). """ def __init__(self, contrast, bias): super().__init__() self.contrast = contrast self.bias = bias def __call__(self, values, clip=True, out=None): # As a special case here, we only clip *after* the # transformation since it does not map [0:1] to [0:1] values = _prepare(values, clip=False, out=out) np.subtract(values, self.bias, out=values) np.multiply(values, self.contrast, out=values) np.add(values, 0.5, out=values) if clip: np.clip(values, 0, 1, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return InvertedContrastBiasStretch(self.contrast, self.bias) class InvertedContrastBiasStretch(BaseStretch): """ Inverse transformation for ContrastBiasStretch. Parameters ---------- contrast : float The contrast parameter (see `~astropy.visualization.ConstrastBiasStretch). bias : float The bias parameter (see `~astropy.visualization.ConstrastBiasStretch). """ def __init__(self, contrast, bias): super().__init__() self.contrast = contrast self.bias = bias def __call__(self, values, clip=True, out=None): # As a special case here, we only clip *after* the # transformation since it does not map [0:1] to [0:1] values = _prepare(values, clip=False, out=out) np.subtract(values, 0.5, out=values) np.true_divide(values, self.contrast, out=values) np.add(values, self.bias, out=values) if clip: np.clip(values, 0, 1, out=values) return values @property def inverse(self): """A stretch object that performs the inverse operation.""" return ContrastBiasStretch(self.contrast, self.bias) class CompositeStretch(CompositeTransform, BaseStretch): """ A combination of two stretches. Parameters ---------- stretch_1 : :class:`astropy.visualization.BaseStretch` The first stretch to apply. stretch_2 : :class:`astropy.visualization.BaseStretch` The second stretch to apply. """ def __call__(self, values, clip=True, out=None): return self.transform_2( self.transform_1(values, clip=clip, out=out), clip=clip, out=out)