"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Chord class which lets you build your Chord charts just passing the arguments to the Chart class and calling the proper functions. """ # ----------------------------------------------------------------------------- # Copyright (c) 2012 - 2016, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from __future__ import absolute_import, division import numpy as np import pandas as pd from math import cos, sin, pi from bkcharts.properties import Dimension from bkcharts.builder import create_and_build, Builder from bkcharts.attributes import MarkerAttr, ColorAttr, CatAttr from bkcharts.utils import color_in_equal_space, help from bokeh.models import Range1d from bokeh.models.glyphs import Arc, Bezier, Text from bokeh.models.renderers import GlyphRenderer from bokeh.models.sources import ColumnDataSource from bokeh.core.properties import Instance, Bool, String, Array, Float, Any, Seq, Either, Int # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- class Area: """ It represents an arc area. It will create a list of available points through the arc representing that area and then those points will be used as start and end for the beziers lines. """ def __init__(self, n_conn, start_point, end_point): # Number of connections in that arc area self.n_conn = n_conn # The start point of the arc representing the area self.start_point = start_point self.end_point = end_point # Equally spaced points between start point and end point free_points_angles = np.linspace(start_point, end_point, n_conn) # A list of available X,Y in the chart to consume by each bezier's start and end point self.free_points = [[cos(angle), sin(angle)] for angle in free_points_angles] assert self.n_conn == len(self.free_points) class ChordBuilder(Builder): """ This is the Chord builder and it is in charge of plotting Chord graphs in an easy and intuitive way. Essentially, we provide a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges. And finally add the needed glyphs (markers) taking the references from the source. """ default_attributes = {'color': ColorAttr(), 'marker': MarkerAttr(), 'stack': CatAttr()} dimensions = ['values'] values = Dimension('values') arcs_data = Instance(ColumnDataSource) text_data = Instance(ColumnDataSource) connection_data = Instance(ColumnDataSource) origin = String() destination = String() value = Any() square_matrix = Bool() label = Seq(Any()) matrix = Array(Array(Either(Float(), Int()))) def set_ranges(self): rng = 1.1 if not self.label else 1.8 self.x_range = Range1d(-rng, rng) self.y_range = Range1d(-rng, rng) def setup(self): # Process only if not a square_matrix if not self.square_matrix: source = self.values._data[self.origin] target = self.values._data[self.destination] union = source.append(target).unique() N = union.shape[0] m = pd.DataFrame(np.zeros((N, N)), columns=union, index=union) if not self.label: self.label = list(union) if self.value is None: for _, row in self.values._data.iterrows(): m[row[self.origin]][row[self.destination]] += 1 self.matrix = m.get_values() if self.value is not None: if isinstance(self.value, int) or isinstance(self.value, float): for _, row in self.values._data.iterrows(): m[row[self.origin]][row[self.destination]] = self.value self.matrix = m.get_values() elif isinstance(self.value, str): for _, row in self.values._data.iterrows(): m[row[self.origin]][row[self.destination]] = row[self.value] self.matrix = m.get_values().T else: # It's already a square matrix self.matrix = self._data.df.get_values() if self.label: assert len(self.label) == self.matrix.shape[0] def process_data(self): weights_of_areas = (self.matrix.sum(axis=0) + self.matrix.sum(axis=1)) - self.matrix.diagonal() areas_in_radians = (weights_of_areas / weights_of_areas.sum()) * (2 * pi) # We add a zero in the begging for the cumulative sum points = np.zeros((areas_in_radians.shape[0] + 1)) points[1:] = areas_in_radians points = points.cumsum() colors = [color_in_equal_space(area / areas_in_radians.shape[0]) for area in range(areas_in_radians.shape[0])] arcs_data = pd.DataFrame({ 'start_angle': points[:-1], 'end_angle': points[1:], 'line_color': colors }) self.arcs_data = ColumnDataSource(arcs_data) # Text if self.label: text_radius = 1.1 angles = (points[:-1]+points[1:])/2.0 text_positions = pd.DataFrame({ 'angles': angles, 'text_x': np.cos(angles) * text_radius, 'text_y': np.sin(angles) * text_radius, 'text': list(self.label) }) self.text_data = ColumnDataSource(text_positions) # Lines all_areas = [] for i in range(areas_in_radians.shape[0]): all_areas.append(Area(weights_of_areas[i], points[:-1][i], points[1:][i])) all_connections = [] for j, region1 in enumerate(self.matrix): # Get the connections origin region source = all_areas[j] color = colors[j] weight = weights_of_areas[j] for k, region2 in enumerate(region1): # Get the connection destination region target = all_areas[k] for _ in range(int(region2)): p1 = source.free_points.pop() p2 = target.free_points.pop() # Get both regions free points and create a connection with the data all_connections.append(p1 + p2 + [color, weight]) connections_df = pd.DataFrame(all_connections, dtype=str) connections_df.columns = ["start_x", "start_y", "end_x", "end_y", "colors", "weight"] connections_df["cx0"] = connections_df.start_x.astype("float64")/2 connections_df["cy0"] = connections_df.start_y.astype("float64")/2 connections_df["cx1"] = connections_df.end_x.astype("float64")/2 connections_df["cy1"] = connections_df.end_y.astype("float64")/2 connections_df.weight = (connections_df.weight.astype("float64")/connections_df.weight.astype("float64").sum()) * 3000 self.connection_data = ColumnDataSource(connections_df) def yield_renderers(self): """Use the marker glyphs to display the arcs and beziers. Takes reference points from data loaded at the ColumnDataSource. """ beziers = Bezier(x0='start_x', y0='start_y', x1='end_x', y1='end_y', cx0='cx0', cy0='cy0', cx1='cx1', cy1='cy1', line_alpha='weight', line_color='colors') yield GlyphRenderer(data_source=self.connection_data, glyph=beziers) arcs = Arc(x=0, y=0, radius=1, line_width=10, start_angle='start_angle', end_angle='end_angle', line_color='line_color') yield GlyphRenderer(data_source=self.arcs_data, glyph=arcs) if self.label: text_props = { "text_color": "#000000", "text_font_size": "8pt", "text_align": "left", "text_baseline": "middle" } labels = Text(x='text_x', y='text_y', text='text', angle='angles', **text_props ) yield GlyphRenderer(data_source=self.text_data, glyph=labels) @help(ChordBuilder) def Chord(data, source=None, target=None, value=None, square_matrix=False, label=None, xgrid=False, ygrid=False, **kw): """ Create a chord chart using :class:`ChordBuilder ` to render a chord graph from a variety of value forms. This chart displays the inter-relationships between data in a matrix. The data can be generated by the chart interface. Given a :class:`DataFrame `, select two columns to be used as arcs with `source` and `target` attributes, passing by the name of those columns. The :class:`Chord ` chart will then deduce the relationship between the arcs. The value of the connections can be inferred automatically by counting `source` and `target`. If you prefer you can assign a fixed value for all the connections with `value` simply passing by a number. A third option is to pass a reference to a third column in the :class:`DataFrame ` with the values for the connections. If you want to plot the relationships in a squared matrix, simply pass the matrix and set `square_matrix` attribute to `True`. Reference: `Chord diagram on Wikipedia `_ Args: data (:ref:`userguide_charts_data_types`): the data source for the chart. source (list(str) or str, optional): Data source to use as origin of the connection to a destination. target (list(str) or str, optional): Data source to use as destination of a connection. value (list(num) or num, optional): The value the connection should have. square_matrix (bool, optional): If square matrix, avoid any calculations during the setup. label (list(str), optional): The labels to be put in the areas. Returns: :class:`Chart`: includes glyph renderers that generate the chord Examples: .. bokeh-plot:: :source-position: above import pandas as pd from bkcharts import Chord from bokeh.io import show, output_file from bokeh.sampledata.les_mis import data nodes = data['nodes'] links = data['links'] nodes_df = pd.DataFrame(nodes) links_df = pd.DataFrame(links) source_data = links_df.merge(nodes_df, how='left', left_on='source', right_index=True) source_data = source_data.merge(nodes_df, how='left', left_on='target', right_index=True) source_data = source_data[source_data["value"] > 5] # Select those with 5 or more connections chord_from_df = Chord(source_data, source="name_x", target="name_y", value="value") output_file('chord_from_df.html') show(chord_from_df) """ kw["origin"] = source kw["destination"] = target kw["value"] = value kw["square_matrix"] = square_matrix kw["label"] = label kw['xgrid'] = xgrid kw['ygrid'] = ygrid chart = create_and_build(ChordBuilder, data, **kw) chart.left[0].visible = False chart.below[0].visible = False chart.outline_line_color = None return chart