#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide U.S. marriage and divorce statistics between 1867 and 2014 Data from the CDC's National Center for Health Statistics (NHCS) database (http://www.cdc.gov/nchs/). Data organized by Randal S. Olson (http://www.randalolson.com) This module contains one pandas Dataframe: ``data``. .. rubric:: ``data`` :bokeh-dataframe:`bokeh.sampledata.us_marriages_divorces.data` ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Bokeh imports from ..util.sampledata import package_csv #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'data', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- def _read_data(): ''' ''' data = package_csv('us_marriages_divorces', 'us_marriages_divorces.csv') return data.interpolate(method='linear', axis=0).ffill().bfill() #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- data = _read_data()