#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Functions for helping with serialization and deserialization of Bokeh objects. Certain NumPy array dtypes can be serialized to a binary format for performance and efficiency. The list of supported dtypes is: {binary_array_types} ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import base64 import datetime as dt import sys import uuid from math import isinf, isnan from threading import Lock from typing import ( TYPE_CHECKING, Any, List, Sequence, Set, Tuple, TypeVar, Union, cast, ) # External imports import numpy as np from typing_extensions import Literal, TypedDict, TypeGuard if TYPE_CHECKING: import pandas as pd else: from .dependencies import import_optional pd = import_optional('pandas') # Bokeh imports from ..core.types import ID from ..settings import settings from .string import format_docstring if TYPE_CHECKING: from ..models.sources import DataDict from ..protocol.message import BufferRef #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- BINARY_ARRAY_TYPES = { np.dtype(np.float32), np.dtype(np.float64), np.dtype(np.uint8), np.dtype(np.int8), np.dtype(np.uint16), np.dtype(np.int16), np.dtype(np.uint32), np.dtype(np.int32), } DATETIME_TYPES: Set[type] = { dt.time, dt.datetime, np.datetime64, } if pd: try: _pd_timestamp = pd.Timestamp except AttributeError: _pd_timestamp = pd.tslib.Timestamp DATETIME_TYPES.add(_pd_timestamp) DATETIME_TYPES.add(pd.Timedelta) DATETIME_TYPES.add(pd.Period) DATETIME_TYPES.add(type(pd.NaT)) NP_EPOCH = np.datetime64(0, 'ms') NP_MS_DELTA = np.timedelta64(1, 'ms') DT_EPOCH = dt.datetime.utcfromtimestamp(0) __doc__ = format_docstring(__doc__, binary_array_types="\n".join(f"* ``np.{x}``" for x in BINARY_ARRAY_TYPES)) __all__ = ( 'array_encoding_disabled', 'convert_date_to_datetime', 'convert_datetime_array', 'convert_datetime_type', 'convert_timedelta_type', 'decode_base64_dict', 'encode_binary_dict', 'encode_base64_dict', 'is_datetime_type', 'is_timedelta_type', 'make_globally_unique_id', 'make_id', 'serialize_array', 'transform_array', 'transform_array_to_list', 'transform_column_source_data', 'traverse_data', 'transform_series', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- ByteOrder = Literal["little", "big"] class BufferJson(TypedDict): __buffer__: ID shape: Tuple[int, ...] dtype: str order: ByteOrder class Base64BufferJson(TypedDict): __ndarray__: str shape: Tuple[int, ...] dtype: str order: ByteOrder if TYPE_CHECKING: Buffers = List[BufferRef] def is_datetime_type(obj: Any) -> TypeGuard[dt.time | dt.datetime | np.datetime64]: ''' Whether an object is any date, time, or datetime type recognized by Bokeh. Arg: obj (object) : the object to test Returns: bool : True if ``obj`` is a datetime type ''' return isinstance(obj, _dt_tuple) def is_timedelta_type(obj: Any) -> TypeGuard[dt.timedelta | np.timedelta64]: ''' Whether an object is any timedelta type recognized by Bokeh. Arg: obj (object) : the object to test Returns: bool : True if ``obj`` is a timedelta type ''' return isinstance(obj, (dt.timedelta, np.timedelta64)) def convert_date_to_datetime(obj: dt.date) -> float: ''' Convert a date object to a datetime Args: obj (date) : the object to convert Returns: datetime ''' return (dt.datetime(*obj.timetuple()[:6], tzinfo=None) - DT_EPOCH).total_seconds() * 1000 def convert_timedelta_type(obj: dt.timedelta | np.timedelta64) -> float: ''' Convert any recognized timedelta value to floating point absolute milliseconds. Arg: obj (object) : the object to convert Returns: float : milliseconds ''' if isinstance(obj, dt.timedelta): return obj.total_seconds() * 1000. elif isinstance(obj, np.timedelta64): return float(obj / NP_MS_DELTA) def convert_datetime_type(obj: pd.NaT | pd.Period | pd.Timestamp | pd.Timedelta | dt.datetime | dt.date | dt.time | np.datetime64) -> float: ''' Convert any recognized date, time, or datetime value to floating point milliseconds since epoch. Arg: obj (object) : the object to convert Returns: float : milliseconds ''' # Pandas NaT if pd and obj is pd.NaT: return np.nan # Pandas Period if pd and isinstance(obj, pd.Period): return obj.to_timestamp().value / 10**6.0 # Pandas Timestamp if pd and isinstance(obj, _pd_timestamp): return obj.value / 10**6.0 # Pandas Timedelta elif pd and isinstance(obj, pd.Timedelta): return obj.value / 10**6.0 # Datetime (datetime is a subclass of date) elif isinstance(obj, dt.datetime): diff = obj.replace(tzinfo=None) - DT_EPOCH return diff.total_seconds() * 1000 # XXX (bev) ideally this would not be here "dates are not datetimes" # Date elif isinstance(obj, dt.date): return convert_date_to_datetime(obj) # NumPy datetime64 elif isinstance(obj, np.datetime64): epoch_delta = obj - NP_EPOCH return float(epoch_delta / NP_MS_DELTA) # Time elif isinstance(obj, dt.time): return (obj.hour * 3600 + obj.minute * 60 + obj.second) * 1000 + obj.microsecond / 1000. AR = TypeVar("AR", bound=Union[Sequence[Any], "np.ndarray"]) def convert_datetime_array(array: AR) -> AR: ''' Convert NumPy datetime arrays to arrays to milliseconds since epoch. Args: array : (obj) A NumPy array of datetime to convert If the value passed in is not a NumPy array, it will be returned as-is. Returns: array ''' if not isinstance(array, np.ndarray): return array # not quite correct, truncates to ms.. if array.dtype.kind == 'M': return array.astype('datetime64[us]').astype('int64') / 1000.0 elif array.dtype.kind == 'm': return array.astype('timedelta64[us]').astype('int64') / 1000.0 # XXX (bev) special case dates, not great elif array.dtype.kind == 'O' and len(array) > 0 and isinstance(array[0], dt.date): try: return array.astype('datetime64[us]').astype('int64') / 1000.0 except Exception: pass return array def make_id() -> ID: ''' Return a new unique ID for a Bokeh object. Normally this function will return simple monotonically increasing integer IDs (as strings) for identifying Bokeh objects within a Document. However, if it is desirable to have globally unique for every object, this behavior can be overridden by setting the environment variable ``BOKEH_SIMPLE_IDS=no``. Returns: str ''' global _simple_id if settings.simple_ids(): with _simple_id_lock: _simple_id += 1 return ID(str(_simple_id)) else: return make_globally_unique_id() def make_globally_unique_id() -> ID: ''' Return a globally unique UUID. Some situations, e.g. id'ing dynamically created Divs in HTML documents, always require globally unique IDs. Returns: str ''' return ID(str(uuid.uuid4())) def array_encoding_disabled(array: np.ndarray) -> bool: ''' Determine whether an array may be binary encoded. The NumPy array dtypes that can be encoded are: {binary_array_types} Args: array (np.ndarray) : the array to check Returns: bool ''' # disable binary encoding for non-supported dtypes return array.dtype not in BINARY_ARRAY_TYPES array_encoding_disabled.__doc__ = format_docstring( array_encoding_disabled.__doc__, binary_array_types="\n ".join(f"* ``np.{x}``" for x in BINARY_ARRAY_TYPES), ) def transform_array(array: np.ndarray, force_list: bool = False, buffers: Buffers | None = None): ''' Transform a NumPy arrays into serialized format Converts un-serializable dtypes and returns JSON serializable format Args: array (np.ndarray) : a NumPy array to be transformed force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) buffers (set, optional) : If binary buffers are desired, the buffers parameter may be provided, and any columns that may be sent as binary buffers will be added to the set. If None, then only base64 encoding will be used (default: None) If force_list is True, then this value will be ignored, and no buffers will be generated. **This is an "out" parameter**. The values it contains will be modified in-place. Returns: JSON ''' array = convert_datetime_array(array) return serialize_array(array, force_list=force_list, buffers=buffers) def transform_array_to_list(array: np.ndarray) -> Sequence[Any]: ''' Transforms a NumPy array into a list of values Args: array (np.nadarray) : the NumPy array series to transform Returns: list or dict ''' if (array.dtype.kind in ('u', 'i', 'f') and (~np.isfinite(array)).any()): transformed = array.astype('object') transformed[np.isnan(array)] = 'NaN' transformed[np.isposinf(array)] = 'Infinity' transformed[np.isneginf(array)] = '-Infinity' return transformed.tolist() elif (array.dtype.kind == 'O' and pd and pd.isnull(array).any()): transformed = array.astype('object') transformed[pd.isnull(array)] = 'NaN' return transformed.tolist() return array.tolist() def transform_series(series: pd.Series | pd.Index, force_list: bool = False, buffers: Buffers | None = None): ''' Transforms a Pandas series into serialized form Args: series (pd.Series) : the Pandas series to transform force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) buffers (set, optional) : If binary buffers are desired, the buffers parameter may be provided, and any columns that may be sent as binary buffers will be added to the set. If None, then only base64 encoding will be used (default: None) If force_list is True, then this value will be ignored, and no buffers will be generated. **This is an "out" parameter**. The values it contains will be modified in-place. Returns: list or dict ''' # not checking for pd here, this function should only be called if it # is already known that series is a Pandas Series type if isinstance(series, pd.PeriodIndex): vals = series.to_timestamp().values else: vals = series.values return transform_array(vals, force_list=force_list, buffers=buffers) def serialize_array(array: np.ndarray, force_list: bool = False, buffers: Buffers | None = None): ''' Transforms a NumPy array into serialized form. Args: array (np.ndarray) : the NumPy array to transform force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) buffers (set, optional) : If binary buffers are desired, the buffers parameter may be provided, and any columns that may be sent as binary buffers will be added to the set. If None, then only base64 encoding will be used (default: None) If force_list is True, then this value will be ignored, and no buffers will be generated. **This is an "out" parameter**. The values it contains will be modified in-place. Returns: list or dict ''' if isinstance(array, np.ma.MaskedArray): array = array.filled(np.nan) # Set masked values to nan if (array_encoding_disabled(array) or force_list): return transform_array_to_list(array) if not array.flags['C_CONTIGUOUS']: array = np.ascontiguousarray(array) if buffers is None: return encode_base64_dict(array) else: return encode_binary_dict(array, buffers) def traverse_data(obj: Sequence[Any], buffers: Buffers | None = None): ''' Recursively traverse an object until a flat list is found. The flat list is converted to a numpy array and passed to transform_array() to handle ``nan``, ``inf``, and ``-inf``. Args: obj (list) : a list of values or lists ''' if all(isinstance(el, np.ndarray) for el in obj): return [transform_array(el, buffers=buffers) for el in obj] obj_copy: List[Any] = [] for item in obj: # Check the base/common case first for performance reasons # Also use type(x) is float because it's faster than isinstance if type(item) is float: if isnan(item): item = 'NaN' elif isinf(item): if item > 0: item = 'Infinity' else: item = '-Infinity' obj_copy.append(item) elif isinstance(item, (list, tuple)): # check less common type second obj_copy.append(traverse_data(item)) else: obj_copy.append(item) return obj_copy def transform_column_source_data(data: DataDict, buffers: Buffers | None = None, cols: List[str] | None = None) -> DataDict: ''' Transform ``ColumnSourceData`` data to a serialized format Args: data (dict) : the mapping of names to data columns to transform buffers (set, optional) : If binary buffers are desired, the buffers parameter may be provided, and any columns that may be sent as binary buffers will be added to the set. If None, then only base64 encoding will be used (default: None) **This is an "out" parameter**. The values it contains will be modified in-place. cols (list[str], optional) : Optional list of subset of columns to transform. If None, all columns will be transformed (default: None) Returns: JSON compatible dict ''' to_transform = set(data) if cols is None else set(cols) data_copy: DataDict = {} for key in to_transform: if pd and isinstance(data[key], (pd.Series, pd.Index)): data_copy[key] = transform_series(data[key], buffers=buffers) elif isinstance(data[key], np.ndarray): data_copy[key] = transform_array(data[key], buffers=buffers) else: data_copy[key] = traverse_data(data[key], buffers=buffers) return data_copy def encode_binary_dict(array: np.ndarray, buffers: Buffers) -> BufferJson: ''' Send a numpy array as an unencoded binary buffer The encoded format is a dict with the following structure: .. code:: python { '__buffer__' : << an ID to locate the buffer >>, 'shape' : << array shape >>, 'dtype' : << dtype name >>, 'order' : << byte order at origin (little or big)>> } Args: array (np.ndarray) : an array to encode buffers (set) : Set to add buffers to **This is an "out" parameter**. The values it contains will be modified in-place. Returns: dict ''' buffer_id = make_id() buf = (dict(id=buffer_id), array.tobytes()) buffers.append(buf) return BufferJson( __buffer__ = buffer_id, shape = array.shape, dtype = str(array.dtype.name), order = cast(ByteOrder, sys.byteorder), ) def encode_base64_dict(array: np.ndarray) -> Base64BufferJson: ''' Encode a NumPy array using base64: The encoded format is a dict with the following structure: .. code:: python { '__ndarray__' : << base64 encoded array data >>, 'shape' : << array shape >>, 'dtype' : << dtype name >>, } Args: array (np.ndarray) : an array to encode Returns: dict ''' return Base64BufferJson( __ndarray__ = base64.b64encode(array.data).decode('utf-8'), shape = array.shape, dtype = str(array.dtype.name), order = cast(ByteOrder, sys.byteorder), ) def decode_base64_dict(data: Base64BufferJson) -> np.ndarray: ''' Decode a base64 encoded array into a NumPy array. Args: data (dict) : encoded array data to decode Data should have the format encoded by :func:`encode_base64_dict`. Returns: np.ndarray ''' b64 = base64.b64decode(data['__ndarray__']) array = np.copy(np.frombuffer(b64, dtype=data['dtype'])) if len(data['shape']) > 1: array = array.reshape(data['shape']) return array #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- _simple_id = 999 _simple_id_lock = Lock() _dt_tuple = tuple(DATETIME_TYPES) #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------