# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from itertools import chain, combinations, permutations, product import pytest from conda.common.compat import iteritems, string_types from conda.common.logic import Clauses, FALSE, TRUE, minimal_unsatisfiable_subset from conda.testing.helpers import raises # These routines implement logical tests with short-circuiting # and propogation of unknown values: # - positive integers are variables # - negative integers are negations of positive variables # - lowercase True and False are fixed values # - None reprents an indeterminate value # If a fixed result is not determinable, the result is None, which # propagates through the result. # # To ensure correctness, the only logic functions we have implemented # directly are NOT and OR. The rest are implemented in terms of these. # Peformance is not an issue. def my_NOT(x): if isinstance(x, int): return -x if isinstance(x, string_types): return x[1:] if x[0] == '!' else '!' + x return None def my_ABS(x): if isinstance(x, int): return abs(x) if isinstance(x, string_types): return x[1:] if x[0] == '!' else x return None def my_OR(*args): '''Implements a logical OR according to the logic: - positive integers are variables - negative integers are negations of positive variables - TRUE and FALSE are fixed values - None is an unknown value TRUE OR x -> TRUE FALSE OR x -> FALSE None OR x -> None x OR y -> None''' if any(v == TRUE for v in args): return TRUE args = set([v for v in args if v != FALSE]) if len(args) == 0: return FALSE if len(args) == 1: return next(v for v in args) if len(set([v if v is None else my_ABS(v) for v in args])) < len(args): return TRUE return None def my_AND(*args): args = list(map(my_NOT, args)) return my_NOT(my_OR(*args)) def my_XOR(i, j): return my_OR(my_AND(i, my_NOT(j)), my_AND(my_NOT(i), j)) def my_ITE(c, t, f): return my_OR(my_AND(c, t), my_AND(my_NOT(c), f)) def my_AMONE(*args): args = [my_NOT(v) for v in args] return my_AND(*[my_OR(v1, v2) for v1, v2 in combinations(args, 2)]) def my_XONE(*args): return my_AND(my_OR(*args), my_AMONE(*args)) def my_SOL(ij, sol): return (TRUE if v in sol or v == TRUE else FALSE for v in ij) def _evaluate_eq(eq, sol): if not isinstance(eq, dict): eq = {c: v for v, c in eq if c not in {TRUE, FALSE}} return sum(eq.get(s, 0) for s in sol if s not in {TRUE, FALSE}) def my_EVAL(eq, sol): # _evaluate_eq doesn't handle TRUE/FALSE entries return _evaluate_eq(eq, sol) + sum(c for c, a in eq if a == TRUE) # Testing strategy: mechanically construct a all possible permutations of # True, False, variables from 1 to m, and their negations, in order to exercise # all logical branches of the function. Test negative, positive, and full # polarities for each. def my_TEST(Mfunc, Cfunc, mmin, mmax, is_iter): for m in range(mmin, mmax+1): if m == 0: ijprod = [()] else: ijprod = (TRUE, FALSE) + sum(((k, my_NOT(k)) for k in range(1, m+1)), ()) ijprod = product(ijprod, repeat=m) for ij in ijprod: C = Clauses() Cpos = Clauses() Cneg = Clauses() for k in range(1, m+1): nm = 'x%d' % k C.new_var(nm) Cpos.new_var(nm) Cneg.new_var(nm) ij2 = tuple( C.from_index(k) if isinstance(k, int) and k not in {TRUE, FALSE} else k for k in ij ) if is_iter: x = Cfunc.__get__(C, Clauses)(ij2) Cpos.Require(Cfunc.__get__(Cpos, Clauses), ij) Cneg.Prevent(Cfunc.__get__(Cneg, Clauses), ij) else: x = Cfunc.__get__(C, Clauses)(*ij2) Cpos.Require(Cfunc.__get__(Cpos, Clauses), *ij) Cneg.Prevent(Cfunc.__get__(Cneg, Clauses), *ij) tsol = Mfunc(*ij) if tsol in {TRUE, FALSE}: assert x == tsol, (ij2, Cfunc.__name__, C.as_list()) assert Cpos.unsat == (tsol != TRUE) and not Cpos.as_list(), (ij, 'Require(%s)') assert Cneg.unsat == (tsol == TRUE) and not Cneg.as_list(), (ij, 'Prevent(%s)') continue for sol in C.itersolve([(x,)]): qsol = Mfunc(*my_SOL(ij, sol)) assert qsol == TRUE, (ij2, sol, Cfunc.__name__, C.as_list()) for sol in Cpos.itersolve([]): qsol = Mfunc(*my_SOL(ij, sol)) assert qsol == TRUE, (ij, sol, 'Require(%s)' % Cfunc.__name__, Cpos.as_list()) for sol in C.itersolve([(C.Not(x),)]): qsol = Mfunc(*my_SOL(ij, sol)) assert qsol == FALSE, (ij2, sol, Cfunc.__name__, C.as_list()) for sol in Cneg.itersolve([]): qsol = Mfunc(*my_SOL(ij, sol)) assert qsol == FALSE, (ij, sol, 'Prevent(%s)' % Cfunc.__name__, Cneg.as_list()) def test_NOT(): my_TEST(my_NOT, Clauses.Not, 1, 1, False) def test_AND(): my_TEST(my_AND, Clauses.And, 2, 2, False) @pytest.mark.integration # only because this test is slow def test_ALL(): my_TEST(my_AND, Clauses.All, 0, 4, True) def test_OR(): my_TEST(my_OR, Clauses.Or, 2, 2, False) @pytest.mark.integration # only because this test is slow def test_ANY(): my_TEST(my_OR, Clauses.Any, 0, 4, True) def test_XOR(): my_TEST(my_XOR, Clauses.Xor, 2, 2, False) def test_ITE(): my_TEST(my_ITE, Clauses.ITE, 3, 3, False) def test_AMONE(): my_TEST(my_AMONE, Clauses.AtMostOne_NSQ, 0, 3, True) my_TEST(my_AMONE, Clauses.AtMostOne_BDD, 0, 3, True) my_TEST(my_AMONE, Clauses.AtMostOne, 0, 3, True) C1 = Clauses(10) x1 = C1.AtMostOne_BDD(tuple(range(1, 11))) C2 = Clauses(10) x2 = C2.AtMostOne(tuple(range(1, 11))) assert x1 == x2 and C1.as_list() == C2.as_list() @pytest.mark.integration # only because this test is slow def test_XONE(): my_TEST(my_XONE, Clauses.ExactlyOne_NSQ, 0, 3, True) my_TEST(my_XONE, Clauses.ExactlyOne_BDD, 0, 3, True) my_TEST(my_XONE, Clauses.ExactlyOne, 0, 3, True) @pytest.mark.integration # only because this test is slow def test_LinearBound(): L = [ ([], [0, 1], 10), ([], [1, 2], 10), ({'x1': 2, 'x2': 2}, [3, 3], 10), ({'x1': 2, 'x2': 2}, [0, 1], 1000), ({'x1': 1, 'x2': 2}, [0, 2], 1000), ({'x1': 2, '!x2': 2}, [0, 2], 1000), ([(1, 1), (2, 2), (3, 3)], [3, 3], 1000), ([(0, 1), (1, 2), (2, 3), (0, 4), (1, 5), (0, 6), (1, 7)], [0, 2], 1000), ([(0, 1), (1, 2), (2, 3), (0, 4), (1, 5), (0, 6), (1, 7), (3, FALSE), (2, TRUE)], [2, 4], 1000), ([(1, 15), (2, 16), (3, 17), (4, 18), (5, 6), (5, 19), (6, 7), (6, 20), (7, 8), (7, 21), (7, 28), (8, 9), (8, 22), (8, 29), (8, 41), (9, 10), (9, 23), (9, 30), (9, 42), (10, 1), (10, 11), (10, 24), (10, 31), (10, 34), (10, 37), (10, 43), (10, 46), (10, 50), (11, 2), (11, 12), (11, 25), (11, 32), (11, 35), (11, 38), (11, 44), (11, 47), (11, 51), (12, 3), (12, 4), (12, 5), (12, 13), (12, 14), (12, 26), (12, 27), (12, 33), (12, 36), (12, 39), (12, 40), (12, 45), (12, 48), (12, 49), (12, 52), (12, 53), (12, 54)], [192, 204], 100), ] for eq, rhs, max_iter in L: if isinstance(eq, dict): N = len(eq) else: N = max([0] + [a for c, a in eq if a != TRUE and a != FALSE]) C = Clauses(N) Cpos = Clauses(N) Cneg = Clauses(N) if isinstance(eq, dict): for k in range(1, N+1): nm = 'x%d' % k C.name_var(k, nm) Cpos.name_var(k, nm) Cneg.name_var(k, nm) eq2 = [(v, C.from_name(c)) for c, v in iteritems(eq)] else: eq2 = eq x = C.LinearBound(eq, rhs[0], rhs[1]) Cpos.Require(Cpos.LinearBound, eq, rhs[0], rhs[1]) Cneg.Prevent(Cneg.LinearBound, eq, rhs[0], rhs[1]) if x != FALSE: for _, sol in zip(range(max_iter), C.itersolve([] if x == TRUE else [(x,)], N)): assert rhs[0] <= my_EVAL(eq2, sol) <= rhs[1], C.as_list() if x != TRUE: for _, sol in zip(range(max_iter), C.itersolve([] if x == TRUE else [(C.Not(x),)], N)): assert not(rhs[0] <= my_EVAL(eq2, sol) <= rhs[1]), C.as_list() for _, sol in zip(range(max_iter), Cpos.itersolve([], N)): assert rhs[0] <= my_EVAL(eq2, sol) <= rhs[1], ('Cpos', Cpos.as_list()) for _, sol in zip(range(max_iter), Cneg.itersolve([], N)): assert not(rhs[0] <= my_EVAL(eq2, sol) <= rhs[1]), ('Cneg', Cneg.as_list()) def test_sat(): C = Clauses() C.new_var('x1') C.new_var('x2') assert C.sat() is not None assert C.sat([]) is not None assert C.sat([()]) is None assert C.sat([(FALSE,)]) is None assert C.sat([(TRUE,), ()]) is None assert C.sat([(TRUE, FALSE, -1)]) is not None assert C.sat([(+1, FALSE), (+2,), (TRUE,)], names=True) == {'x1', 'x2'} assert C.sat([(-1, FALSE), (TRUE,), (+2,)], names=True) == {'x2'} assert C.sat([(TRUE,), (-1,), (-2, FALSE)], names=True) == set() assert C.sat([(+1,), (-1, FALSE)], names=True) is None C._clauses.unsat = True assert C.sat() is None assert C.sat([]) is None assert C.sat([(TRUE,)]) is None assert len(Clauses(10).sat([[1]])) == 10 def test_minimize(): # minimize x1 + 2 x2 + 3 x3 + 4 x4 + 5 x5 # subject to x1 + x2 + x3 + x4 + x5 == 1 C = Clauses(15) C.Require(C.ExactlyOne, range(1, 6)) sol = C.sat() C._clauses.unsat = True # Unsatisfiable constraints assert C.minimize([(k, k) for k in range(1, 6)], sol)[1] == 16 C._clauses.unsat = False sol, sval = C.minimize([(k, k) for k in range(1, 6)], sol) assert sval == 1 C.Require(C.ExactlyOne, range(6, 11)) # Supply an initial vector that is too short, forcing recalculation sol, sval = C.minimize([(k, k) for k in range(6, 11)], sol) assert sval == 6 C.Require(C.ExactlyOne, range(11, 16)) # Don't supply an initial vector sol, sval = C.minimize([(k, k) for k in range(11, 16)]) assert sval == 11 @pytest.mark.xfail(reason="Broke this with reworking minimal_unsatisfiable_set. Not sure how to fix. minimal_unsatisfiable_subset function is otherwise working well.") def test_minimal_unsatisfiable_subset(): def sat(val): return Clauses(max(abs(v) for v in chain(*val))).sat(val) assert raises(ValueError, lambda: minimal_unsatisfiable_subset([[1]], sat)) clauses = [[-10], [1], [5], [2, 3], [3, 4], [5, 2], [-7], [2], [3], [-2, -3, 5], [7, 8, 9, 10], [-8], [-9]] res = minimal_unsatisfiable_subset(clauses, sat) assert sorted(res) == [[-10], [-9], [-8], [-7], [7, 8, 9, 10]] assert not sat(res) clauses = [[1, 3], [2, 3], [-1], [4], [3], [-3]] for perm in permutations(clauses): res = minimal_unsatisfiable_subset(clauses, sat) assert sorted(res) == [[-3], [3]] assert not sat(res) clauses = [[1], [-1], [2], [-2], [3, 4], [4]] for perm in permutations(clauses): res = minimal_unsatisfiable_subset(perm, sat) assert sorted(res) in [[[-1], [1]], [[-2], [2]]] assert not sat(res)