#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py KNN scikit-learn-compatible classes from ._base import NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin from .._utils import sklearn_check_version from .._device_offload import support_usm_ndarray if sklearn_check_version("0.22"): from sklearn.utils.validation import _deprecate_positional_args else: def _deprecate_positional_args(f): return f if sklearn_check_version("0.22") and not sklearn_check_version("0.23"): class NearestNeighbors(KNeighborsMixin, RadiusNeighborsMixin, NeighborsBase): def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None): super().__init__( n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs) @support_usm_ndarray() def fit(self, X, y=None): return NeighborsBase._fit(self, X) else: class NearestNeighbors(KNeighborsMixin, RadiusNeighborsMixin, NeighborsBase): @_deprecate_positional_args def __init__(self, *, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None): super().__init__( n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs) @support_usm_ndarray() def fit(self, X, y=None): return NeighborsBase._fit(self, X)