#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py assiciation rules example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c=None, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): infile = "./data/batch/apriori.csv" # configure a association_rules object algo = d4p.association_rules(discoverRules=True, minSupport=0.001, minConfidence=0.7) # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = readcsv(infile) result2 = algo.compute(data) # association_rules result objects provide antecedentItemsets, # confidence, consequentItemsets, largeItemsets and largeItemsetsSupport assert np.allclose(result1.largeItemsets, result2.largeItemsets) assert np.allclose(result1.largeItemsetsSupport, result2.largeItemsetsSupport) assert np.allclose(result1.antecedentItemsets, result2.antecedentItemsets) assert np.allclose(result1.consequentItemsets, result2.consequentItemsets) assert np.allclose(result1.confidence, result2.confidence) return result1 if __name__ == "__main__": result1 = main() print('Confidence: (20 first)') print(result1.confidence[0:20]) print('All looks good!')