#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Brute Force KNN example for shared memory systems import daal4py as d4p import numpy as np import os # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): # Input data set parameters train_file = os.path.join('data', 'batch', 'k_nearest_neighbors_train.csv') predict_file = os.path.join('data', 'batch', 'k_nearest_neighbors_test.csv') # Read data. Let's use 5 features per observation nFeatures = 5 nClasses = 5 train_data = readcsv(train_file, range(nFeatures)) train_labels = readcsv(train_file, range(nFeatures, nFeatures + 1)) # Create an algorithm object and call compute train_algo = d4p.bf_knn_classification_training(nClasses=nClasses) # 'weights' is optional argument, let's use equal weights # in this case results must be the same as without weights weights = np.ones((train_data.shape[0], 1)) train_result = train_algo.compute(train_data, train_labels, weights) # Now let's do some prediction predict_data = readcsv(predict_file, range(nFeatures)) predict_labels = readcsv(predict_file, range(nFeatures, nFeatures + 1)) # Create an algorithm object and call compute predict_algo = d4p.bf_knn_classification_prediction(nClasses=nClasses) predict_result = predict_algo.compute(predict_data, train_result.model) # We expect less than 170 mispredicted values assert np.count_nonzero(predict_labels != predict_result.prediction) < 170 return (train_result, predict_result, predict_labels) if __name__ == "__main__": (train_result, predict_result, predict_labels) = main() print("Brute Force kNN classification results:") print("Ground truth(observations #30-34):\n", predict_labels[30:35]) print( "Classification results(observations #30-34):\n", predict_result.prediction[30:35] )