#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py correlation distance example for shared memory systems import daal4py as d4p import numpy as np import os # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): data = readcsv(os.path.join('data', 'batch', 'distance.csv'), range(10)) # Create algorithm to compute correlation distance (no parameters) algorithm = d4p.correlation_distance() # Computed correlation distance with file or numpy array res1 = algorithm.compute(os.path.join('data', 'batch', 'distance.csv')) res2 = algorithm.compute(data) assert np.allclose(res1.correlationDistance, res2.correlationDistance) return res1 if __name__ == "__main__": res = main() print( "\nCorrelation distance (first 15 rows/columns):\n", res.correlationDistance[0:15, 0:15] ) print("All looks good!")