#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py DBSCAN example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): infile = "./data/batch/dbscan_dense.csv" epsilon = 0.04 minObservations = 45 # Load the data data = readcsv(infile, range(2)) # configure dbscan main object: # we also request the indices and observations of cluster cores algo = d4p.dbscan( minObservations=minObservations, epsilon=epsilon, resultsToCompute='computeCoreIndices|computeCoreObservations' ) # and compute result = algo.compute(data) # Note: we could have done this in just one line: # assignments = d4p.dbscan( # minObservations=minObservations, # epsilon=epsilon, # resultsToCompute='computeCoreIndices|computeCoreObservations' # ).compute(data).assignments # DBSCAN result objects provide assignments, # nClusters and coreIndices/coreObservations (if requested) assert result.assignments.shape == (data.shape[0], 1) assert result.coreObservations.shape == (result.coreIndices.shape[0], data.shape[1]) return result if __name__ == "__main__": result = main() print("\nFirst 10 cluster assignments:\n", result.assignments[0:10]) print("\nFirst 10 cluster core indices:\n", result.coreIndices[0:10]) print("\nFirst 10 cluster core observations:\n", result.coreObservations[0:10]) print("\nNumber of clusters:\n", result.nClusters) print('All looks good!')