#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Decision Tree Classification example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float32) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=np.float32) def main(readcsv=read_csv, method='defaultDense'): # input data file infile = "./data/batch/decision_tree_train.csv" prunefile = "./data/batch/decision_tree_prune.csv" testfile = "./data/batch/decision_tree_test.csv" # Configure a training object (5 classes) train_algo = d4p.decision_tree_classification_training(5) # Read data. Let's use 5 features per observation data = readcsv(infile, range(5), t=np.float32) labels = readcsv(infile, range(5, 6), t=np.float32) prunedata = readcsv(prunefile, range(5), t=np.float32) prunelabels = readcsv(prunefile, range(5, 6), t=np.float32) train_result = train_algo.compute(data, labels, prunedata, prunelabels) # Now let's do some prediction predict_algo = d4p.decision_tree_classification_prediction() # read test data (with same #features) pdata = readcsv(testfile, range(5), t=np.float32) plabels = readcsv(testfile, range(5, 6), t=np.float32) # now predict using the model from the training above predict_result = predict_algo.compute(pdata, train_result.model) # Prediction result provides prediction assert(predict_result.prediction.shape == (pdata.shape[0], 1)) return (train_result, predict_result, plabels) if __name__ == "__main__": (train_result, predict_result, plabels) = main() print( "\nDecision tree prediction results (first 20 rows):\n", predict_result.prediction[0:20] ) print("\nGround truth (first 20 rows):\n", plabels[0:20]) print('All looks good!')