#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py em_gmm example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c=None, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): nComponents = 2 infile = "./data/batch/em_gmm.csv" # We load the data data = readcsv(infile) # configure a em_gmm init object algo1 = d4p.em_gmm_init(nComponents) # and compute initial model result1 = algo1.compute(data) # configure a em_gmm object algo2 = d4p.em_gmm(nComponents) # and compute em_gmm using initial weights and means result2 = algo2.compute(data, result1.weights, result1.means, result1.covariances) # implicit als prediction result objects provide covariances, # goalFunction, means, nIterations and weights return result2 if __name__ == "__main__": res = main() print("Weights:\n", res.weights) print("Means:\n", res.means) for c in res.covariances: print("Covariance:\n", c) print('All looks good!')