#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py K-Means example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): infile = "./data/batch/kmeans_dense.csv" nClusters = 20 maxIter = 5 initrain_algo = d4p.kmeans_init(nClusters, method="randomDense") # Load the data data = readcsv(infile, range(20)) # compute initial centroids initrain_result = initrain_algo.compute(data) # The results provides the initial centroids assert initrain_result.centroids.shape[0] == nClusters # configure kmeans main object: we also request the cluster assignments algo = d4p.kmeans(nClusters, maxIter, assignFlag=True) # compute the clusters/centroids result = algo.compute(data, initrain_result.centroids) # Note: we could have done this in just one line: # d4p.kmeans(nClusters, maxIter, assignFlag=True).compute( # data, d4p.kmeans_init(nClusters, method="plusPlusDense").compute(data).centroids # ) # Kmeans result objects provide assignments (if requested), centroids, # goalFunction, nIterations and objectiveFunction assert result.centroids.shape[0] == nClusters assert result.assignments.shape == (data.shape[0], 1) assert result.nIterations <= maxIter return result if __name__ == "__main__": result = main() print("\nFirst 10 cluster assignments:\n", result.assignments[0:10]) print("\nFirst 10 dimensions of centroids:\n", result.centroids[:, 0:10]) print("\nObjective function value:\n", result.objectiveFunction) print('All looks good!')