#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py LBFGS (limited memory Broyden-Fletcher-Goldfarb-Shanno) # example for shared memory systems # using Mean Squared Error objective function import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): infile = "./data/batch/lbfgs.csv" # Read the data, let's have 10 independent variables data = readcsv(infile, range(10)) dep_data = readcsv(infile, range(10, 11)) nVectors = data.shape[0] # configure a MSE object mse_algo = d4p.optimization_solver_mse(nVectors) mse_algo.setup(data, dep_data) # configure an LBFGS object sls = np.array([[1.0e-4]], dtype=np.double) niters = 1000 lbfgs_algo = d4p.optimization_solver_lbfgs(mse_algo, stepLengthSequence=sls, nIterations=niters) # finally do the computation inp = np.array([[100]] * 11, dtype=np.double) res = lbfgs_algo.compute(inp) # The LBFGS result provides minimum and nIterations assert res.minimum.shape == inp.shape and res.nIterations[0][0] <= niters return res if __name__ == "__main__": res = main() print( "\nExpected coefficients:\n", np.array( [[11], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]], dtype=np.double ) ) print("\nResulting coefficients:\n", res.minimum) print("\nNumber of iterations performed:\n", res.nIterations[0][0]) print('All looks good!')