#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Linear Regression example for distributed memory systems; SPMD mode # run like this: # mpirun -n 4 python ./linreg_spmd.py import daal4py as d4p from numpy import loadtxt if __name__ == "__main__": # Initialize SPMD mode d4p.daalinit() # Each process gets its own data infile = "./data/distributed/linear_regression_train_" + \ str(d4p.my_procid() + 1) + ".csv" # Configure a Linear regression training object train_algo = d4p.linear_regression_training(distributed=True) # Read data. Let's have 10 independent, # and 2 dependent variables (for each observation) indep_data = loadtxt(infile, delimiter=',', usecols=range(10)) dep_data = loadtxt(infile, delimiter=',', usecols=range(10, 12)) # Now train/compute, the result provides the model for prediction train_result = train_algo.compute(indep_data, dep_data) # Now let's do some prediction # It run only on a single node if d4p.my_procid() == 0: predict_algo = d4p.linear_regression_prediction() # read test data (with same #features) pdata = loadtxt("./data/distributed/linear_regression_test.csv", delimiter=',', usecols=range(10)) # now predict using the model from the training above predict_result = d4p.linear_regression_prediction().compute(pdata, train_result.model) # The prediction result provides prediction assert predict_result.prediction.shape == (pdata.shape[0], dep_data.shape[1]) print('All looks good!') d4p.daalfini()