#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py logistic regression example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): nClasses = 2 nFeatures = 20 # read training data from file with 20 features per observation and 1 class label trainfile = "./data/batch/binary_cls_train.csv" train_data = readcsv(trainfile, range(nFeatures)) train_labels = readcsv(trainfile, range(nFeatures, nFeatures + 1)) # set parameters and train train_alg = d4p.logistic_regression_training(nClasses=nClasses, interceptFlag=True) train_result = train_alg.compute(train_data, train_labels) # read testing data from file with 20 features per observation testfile = "./data/batch/binary_cls_test.csv" predict_data = readcsv(testfile, range(nFeatures)) predict_labels = readcsv(testfile, range(nFeatures, nFeatures + 1)) # set parameters and compute predictions predict_alg = d4p.logistic_regression_prediction(nClasses=nClasses) predict_result = predict_alg.compute(predict_data, train_result.model) # the prediction result provides prediction assert predict_result.prediction.shape == (predict_data.shape[0], train_labels.shape[1]) return (train_result, predict_result, predict_labels) if __name__ == "__main__": (train_result, predict_result, predict_labels) = main() print("\nLogistic Regression coefficients:\n", train_result.model.Beta) print( "\nLogistic regression prediction results (first 10 rows):\n", predict_result.prediction[0:10] ) print("\nGround truth (first 10 rows):\n", predict_labels[0:10]) print('All looks good!')