#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Naive Bayes Classification example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='defaultDense'): # input data file infile = "./data/batch/naivebayes_train_dense.csv" testfile = "./data/batch/naivebayes_test_dense.csv" # Configure a training object (20 classes) talgo = d4p.multinomial_naive_bayes_training(20, method=method) # Read data. Let's use 20 features per observation data = readcsv(infile, range(20)) labels = readcsv(infile, range(20, 21)) tresult = talgo.compute(data, labels) # Now let's do some prediction palgo = d4p.multinomial_naive_bayes_prediction(20, method=method) # read test data (with same #features) pdata = readcsv(testfile, range(20)) plabels = readcsv(testfile, range(20, 21)) # now predict using the model from the training above presult = palgo.compute(pdata, tresult.model) # Prediction result provides prediction assert(presult.prediction.shape == (pdata.shape[0], 1)) return (presult, plabels) if __name__ == "__main__": (presult, plabels) = main() print( "\nNaiveBayes classification results (first 20 observations):\n", presult.prediction[0:20] ) print("\nGround truth (first 20 observations)\n", plabels[0:20]) print('All looks good!')