#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Naive Bayes Classification example for streaming on shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, s=0, n=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, skiprows=s, nrows=n, dtype=t) except: # fall back to numpy genfromtxt def read_csv(f, c, s=0, n=np.iinfo(np.int64).max): a = np.genfromtxt(f, usecols=c, delimiter=',', skip_header=s, max_rows=n) if a.shape[0] == 0: raise Exception("done") if a.ndim == 1: return a[:, np.newaxis] return a def main(readcsv=read_csv, method='defaultDense'): # input data file infile = "./data/batch/naivebayes_train_dense.csv" testfile = "./data/batch/naivebayes_test_dense.csv" # Configure a training object (20 classes) train_algo = d4p.multinomial_naive_bayes_training(20, streaming=True, method=method) chunk_size = 250 lines_read = 0 # read and feed chunk by chunk while True: # Read data in chunks # Read data. Let's use 20 features per observation try: data = readcsv(infile, range(20), lines_read, chunk_size) labels = readcsv(infile, range(20, 21), lines_read, chunk_size) except: break # Now feed chunk train_algo.compute(data, labels) lines_read += data.shape[0] # All chunks are done, now finalize the computation train_result = train_algo.finalize() # Now let's do some prediction pred_algo = d4p.multinomial_naive_bayes_prediction(20, method=method) # read test data (with same #features) pred_data = readcsv(testfile, range(20)) pred_labels = readcsv(testfile, range(20, 21)) # now predict using the model from the training above pred_result = pred_algo.compute(pred_data, train_result.model) # Prediction result provides prediction assert(pred_result.prediction.shape == (pred_data.shape[0], 1)) return (pred_result, pred_labels) if __name__ == "__main__": (result, labels) = main() print( "\nNaiveBayes classification results (first 20 observations):\n", result.prediction[0:20] ) print("\nGround truth (first 20 observations)\n", labels[0:20]) print('All looks good!')