#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py PCA example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c=None, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='svdDense'): infile = "./data/batch/pca_normalized.csv" # 'normalization' is an optional parameter to PCA; # we use z-score which could be configured differently zscore = d4p.normalization_zscore() # configure a PCA object algo = d4p.pca(resultsToCompute="mean|variance|eigenvalue", isDeterministic=True, normalization=zscore) # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = readcsv(infile) result2 = algo.compute(data) # PCA result objects provide eigenvalues, eigenvectors, means and variances assert np.allclose(result1.eigenvalues, result2.eigenvalues) assert np.allclose(result1.eigenvectors, result2.eigenvectors) assert np.allclose(result1.means, result2.means) assert np.allclose(result1.variances, result2.variances) assert result1.eigenvalues.shape == (1, data.shape[1]) assert result1.eigenvectors.shape == (data.shape[1], data.shape[1]) assert result1.means.shape == (1, data.shape[1]) assert result1.variances.shape == (1, data.shape[1]) return result1 if __name__ == "__main__": result1 = main() print("\nEigenvalues:\n", result1.eigenvalues) print("\nEigenvectors:\n", result1.eigenvectors) print("\nMeans:\n", result1.means) print("\nVariances:\n", result1.variances) print('All looks good!')