#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py PCA example for distributed memory systems; SPMD mode # run like this: # mpirun -n 4 python ./pca_spmd.py import daal4py as d4p from numpy import loadtxt, allclose if __name__ == "__main__": # Initialize SPMD mode d4p.daalinit() # Each process gets its own data infile = "./data/distributed/pca_normalized_" + str(d4p.my_procid() + 1) + ".csv" # configure a PCA object to use svd instead of default correlation algo = d4p.pca(method='svdDense', distributed=True) # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = loadtxt(infile, delimiter=',') result2 = algo.compute(data) # PCA result objects provide eigenvalues, eigenvectors, means and variances assert allclose(result1.eigenvalues, result2.eigenvalues) assert allclose(result1.eigenvectors, result2.eigenvectors) assert result1.means is None and \ result2.means is None or \ allclose(result1.means, result2.means) assert result1.variances is None and \ result2.variances is None or \ allclose(result1.variances, result2.variances) print('All looks good!') d4p.daalfini()