#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py PCA example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(readcsv=read_csv, method='svdDense'): dataFileName = "data/batch/pca_transform.csv" nComponents = 2 # read data data = readcsv(dataFileName, range(3)) # configure a PCA object and perform PCA pca_algo = d4p.pca(isDeterministic=True, resultsToCompute="mean|variance|eigenvalue") pca_res = pca_algo.compute(data) # Apply transform with whitening because means and eigenvalues are provided pcatrans_algo = d4p.pca_transform(nComponents=nComponents) pcatrans_res = pcatrans_algo.compute(data, pca_res.eigenvectors, pca_res.dataForTransform) # pca_transform_result objects provides transformedData return (pca_res, pcatrans_res) if __name__ == "__main__": pca_res, pcatrans_res = main() # print PCA results print("\nEigenvalues:\n", pca_res.eigenvalues) print("\nEigenvectors:\n", pca_res.eigenvectors) print("\nEigenvalues kv:\n", pca_res.dataForTransform['eigenvalue']) print("\nMeans kv:\n", pca_res.dataForTransform['mean']) print("\nVariances kv:\n", pca_res.dataForTransform['variance']) # print results of tranform print("\nTransformed data:", pcatrans_res.transformedData) print('All looks good!')