#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py SVD example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float32) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=np.float32) def main(readcsv=read_csv, method='defaultDense'): infile = "./data/batch/svd.csv" # configure a SVD object algo = d4p.svd() # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array algo = d4p.svd() data = readcsv(infile, range(18), t=np.float32) result2 = algo.compute(data) # SVD result objects provide leftSingularMatrix, # rightSingularMatrix and singularValues assert np.allclose(result1.leftSingularMatrix, result2.leftSingularMatrix, atol=1e-07) assert np.allclose(result1.rightSingularMatrix, result2.rightSingularMatrix, atol=1e-07) assert np.allclose(result1.singularValues, result2.singularValues, atol=1e-07) assert result1.singularValues.shape == (1, data.shape[1]) assert result1.rightSingularMatrix.shape == (data.shape[1], data.shape[1]) assert result1.leftSingularMatrix.shape == data.shape if hasattr(data, 'toarray'): data = data.toarray() # to make the next assertion work with scipy's csr_matrix assert np.allclose( data, np.matmul( np.matmul(result1.leftSingularMatrix, np.diag(result1.singularValues[0])), result1.rightSingularMatrix ) ) return (data, result1) if __name__ == "__main__": (_, result) = main() print(result) print('All looks good!')