#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py SVD example for streaming on shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, s=0, n=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, skiprows=s, nrows=n, dtype=t) except: # fall back to numpy genfromtxt def read_csv(f, c, s=0, n=np.iinfo(np.int64).max): a = np.genfromtxt(f, usecols=c, delimiter=',', skip_header=s, max_rows=n) if a.shape[0] == 0: raise Exception("done") if a.ndim == 1: return a[:, np.newaxis] return a def main(readcsv=read_csv, method='defaultDense'): infiles = ["./data/distributed/svd_{}.csv".format(i) for i in range(1, 5)] # configure a SVD object algo = d4p.svd(streaming=True) # let's provide files directly, not a tables/arrays # Feed file by file for infile in infiles: algo.compute(infile) # All files are done, now finalize the computation result = algo.finalize() # SVD result objects provide leftSingularMatrix, # rightSingularMatrix and singularValues return result if __name__ == "__main__": result = main() print("\nSingular values:\n", result.singularValues) print("\nRight orthogonal matrix V:\n", result.rightSingularMatrix) print( "\nLeft orthogonal matrix U (first 10 rows):\n", result.leftSingularMatrix[0:10] ) print('All looks good!')