#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py BF KNN example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data # Common code for both CPU and GPU computations def compute(train_data, train_labels, predict_data, nClasses): # Create an algorithm object and call compute train_algo = d4p.bf_knn_classification_training(nClasses=nClasses, fptype='float') train_result = train_algo.compute(train_data, train_labels) # Create an algorithm object and call compute predict_algo = d4p.bf_knn_classification_prediction(nClasses=nClasses, fptype='float') predict_result = predict_algo.compute(predict_data, train_result.model) return predict_result def main(readcsv=read_csv, method='defaultDense'): # Input data set parameters train_file = os.path.join('..', 'data', 'batch', 'k_nearest_neighbors_train.csv') predict_file = os.path.join('..', 'data', 'batch', 'k_nearest_neighbors_test.csv') # Read data. Let's use 5 features per observation nFeatures = 5 nClasses = 5 train_data = readcsv(train_file, range(nFeatures), t=np.float32) train_labels = readcsv(train_file, range(nFeatures, nFeatures + 1), t=np.float32) predict_data = readcsv(predict_file, range(nFeatures), t=np.float32) predict_labels = readcsv(predict_file, range(nFeatures, nFeatures + 1), t=np.float32) predict_result_classic = compute(train_data, train_labels, predict_data, nClasses) # We expect less than 170 mispredicted values assert np.count_nonzero(predict_labels != predict_result_classic.prediction) < 170 train_data = to_numpy(train_data) train_labels = to_numpy(train_labels) predict_data = to_numpy(predict_data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') if gpu_available: with gpu_context(): sycl_train_data = sycl_buffer(train_data) sycl_train_labels = sycl_buffer(train_labels) sycl_predict_data = sycl_buffer(predict_data) predict_result_gpu = compute(sycl_train_data, sycl_train_labels, sycl_predict_data, nClasses) assert np.allclose(predict_result_gpu.prediction, predict_result_classic.prediction) with cpu_context(): sycl_train_data = sycl_buffer(train_data) sycl_train_labels = sycl_buffer(train_labels) sycl_predict_data = sycl_buffer(predict_data) predict_result_cpu = compute(sycl_train_data, sycl_train_labels, sycl_predict_data, nClasses) assert np.allclose(predict_result_cpu.prediction, predict_result_classic.prediction) return (predict_result_classic, predict_labels) if __name__ == "__main__": (predict_result, predict_labels) = main() print("BF based KNN classification results:") print("Ground truth(observations #30-34):\n", predict_labels[30:35]) print( "Classification results(observations #30-34):\n", predict_result.prediction[30:35] )